Preprints
- C. Kodsi and D. Pasadakis. “Nonlinear Modified PageRank Problem for Local Graph Partitioning,” September 2024, arXiv link code.
Journal articles
A. Eftekhari, L. Gaedke-Merzhäuser, D. Pasadakis, M. Bollhöfer, S. Scheidegger, and O. Schenk. 2024. “Algorithm XXX: Sparse Precision Matrix Estimation With SQUIC,” ACM Transactions of Mathematical Software, March 2024. doi: 10.1145/3650108.
D. Pasadakis, M. Bollhöfer, and O. Schenk, “Sparse quadratic approximation for graph learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 9, pp. 11256-11269, 1 Sept. 2023, doi: 10.1109/TPAMI.2023.3263969 and TechRxiv link.
D. Pasadakis, C.L. Alappat, O. Schenk, and G. Wellein, “Multiway p-spectral graph cuts on Grassmann manifolds,” Machine Learning 111, 791–829, 2022, doi: 10.1007/s10994-021-06108-1.
A. Eftekhari, D. Pasadakis, M. Bollhöfer, S. Scheidegger, and O. Schenk, “Block-enhanced precision matrix estimation for large-scale datasets,” Journal of Computational Science, Volume 53, 2021, doi: 10.1016/j.jocs.2021.101389.
Conference papers
M. Lechekhab, D. Pasadakis, and O. Schenk, “Multilevel diffusion based spectral graph clustering,” in IEEE High Performance Extreme Computing Conference, 23 - 27 September 2024. Outstanding paper award. paper
J. Schmidt, D. Pasadakis, M. Sathe, and O. Schenk, “GAMLNet: a graph based framework for the detection of money laundering,” 2024 11th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 2024, pp. 241-245. Best poster award. poster doi: 10.1109/SDS60720.2024.00043
V.I. Makri and D. Pasadakis, “The clustering of source rocks: A spectral approach”. in Mediterranean Geosciences Union, MedGU, 20 March 2024. doi: 10.1007/978-3-031-48758-3_72
D. Pasadakis, O. Schenk, V. Vlacic, and A.-J. Yzelman, “Nonlinear spectral clustering with C++ GraphBLAS,” in IEEE High Performance Extreme Computing Conference, 25 - 29 September 2023. Outstanding short paper award. paper poster
V.I. Makri, D. Pasadakis, and N. Pasadakis, “A novel chemometric approach for oil & source rock clustering,” in European Association of Geoscientists & Engineers, pp. 1-2, 2023, doi: 10.3997/2214-4609.202333183.
T. Simpson, D. Pasadakis, D. Kourounis, K. Fujita, T. Yamaguchi, T. Ichimura, and O. Schenk, “Balanced graph partition refinement using the graph p-Laplacian,” in Proceedings of the Platform for Advanced Scientific Computing Conference, Association for Computing Machinery, New York, NY, USA, PASC ’18, 2018, doi: 10.1145/3218176.3218232.
Thesis
- D. Pasadakis, “Learning and clustering graphs from high dimensional data,” PhD thesis, Università della Svizzera italiana, 2023. Thesis