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Bit-1f Compression

Incremental Sparse Fibers with Bit Encoding (Bit-IF') was designed to address the limitations
of existing sparse tensor formats. It is based on incremental compression concepts previously explored
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Bit-1F’s three central design guidelines are:

Traversal Curve Based Approach to TVM

kth mode Tensor-Vector Multiplication (TVM)

ng
e Minimal prior knowledge: No extensive preprocessing or reordering of the input tensor indices Bio....iv-vsinsismiar = Z Aioywinsia—s * Vig:
should be needed to perform TVM along arbitrary modes. =
e Mode independence: With increments and bit encoding, Bit-IF avoids dependence on a Traversal curves enable arbitrary tensor traversal for TVM, bypassing the computationally expensive
specific mode ordering, enabling flexible access and rearrangement of modes. reordering of tensor entries before computation. This flexibility reduces preprocessing overhead, elim-
inates the need for multiple instances of the same tensor and ensures efficient access patterns across

e Arbitrary index traversal: This concept allows for index access patterns that improve data different tensor modes.

locality for specific tensor operations and performance optimizations besides mode independence. Traversal Curves

Compression from COO
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Key Components Blocking vs Non-blocking

e Incremental Indexing: Tensor indices are represented as increments along each mode, reducing Blocking synergizes with traversal curves to enhance TVM efficiency by fitting smaller tensor segments
storage overhead by capturing only the changes between consecutive indices. into the cache, optimizing data locality. It reduces data movement and computational overhead, thus

improving performance, especially for large tensors. However, when selecting an optimal block size,

e Bit Encoding: A compact bit vector encodes the presence and direction of increments for each special attention must be given to the often non-deterministic sparsity patterns, as it must balance

nonzero entry, enabling efficient traversal and storage. computational overhead, cache efficiency, and workload distribution.
Algorithms Performance Comparison
nell-2 (nnz = 7.69 - 107) delicious-4d (nnz = 1.4 - 10%)
Algorithm 1 From COO to Bit-IF Algorithm 2 TVM for Arbitrary Traversal Orders "
Input: Input indices in COO format Input: AA, by, valy, v 50 — \é(llth{;:l\
Output: AA by Output: AB, bg, valg OO base
1: Initialize AA; for j=0,...,d—1 1: Initialize temporary value T m B COO pasta
2: Store indices of COO g ; in AA; 2: for each set b in b4 do B HICOO pasta
3: Setb; =1,j=0,...,d—1 3: if only b;_; = 1 then %730 \?
4: for r =0,1,...,nnz4 do 4: ipr1 += Adg_q 2 2
5: Compute increments Ai = ¢, — i,_1 5 Update T += v(ix—1) - val 4 (ix—1) ]
6: for each mode j =0,...,d—1do 6: elseif b; =1,j#k—1or by, =0 then
7 if Ai; #0 then 7 for remaining modes j do 10)— Segments
8: Add Aij to AA, 8: if b; = 1 then o Lmeto Sl
9: Add 1toby 9: Get Ai; from AA; 0 - - - : | 1
10: else 10: ij += Aij Mode Mode
11: Add 0 to ba 11: else . g We compare the time to solution of Bit-IF and HiCOO
12: end if 12: J+=1 synthetic tensor (nnz = 10%) for TVM using different real-world and synthetic tensors.
13:  end for 13: end if . We also explore the conversion time needed from an
14: end for 14 fefnd fOZ Clth ! initial COO presentation. We present PASTA’s and our
deN Order of the tensor 12 ' aéyet ;Zk_;f;o t e;;_z o COO implementations as baselines, illustrating Bit-IF’s
n; Size of dimension/mode j 17: UpdateyVB(ik;y) \;vith i0, . ig_s if nOt contained 50 current unblocked implementation state and potential for
AX Increment arrays of X 18: valg(ixey) ¢ T E o further improvements. The synthetic tensor — a
Ai Current increments 19: end if = fourth-order tensor with identical dimensions and
valy Non-zero values of X 20:  endif " nnz-rates — tests mode-dependent behavior.
i i 21: end for 2 , . —
?/); E/[l;; I;E(?iilflggtirer av}f;lifef of B| 22 Compute AB, b with Up according to Alg. 1 ol W
nnzy € N | Number of non-zero entries 4.20x TVM Computation | 5.08 x Conversion

Comparison Future Work

Theoretical Analysis

COO-: S (wval n d'wmt) . Vethods ° .Investigaze impa(;:t c;fh sgrllalifr data types for Bit-IF
Bit I iy - (wml g Z;l;(l) o wmc,s) . Dir increments paired wi ocking.
HiCOO: nnzy - (wval + Qp - Wiong + 0 - d - Wiy + d - wbyte) e e S [ CQ 0 e Further optimize the TVM traversal curve based
% W HICOO approach for single thread execution.
wya — Storage size for a tensor value. é 2.0 (- -
Wines Storage size for short integer increments. g ° Pa.rallelize the .TVM traversal curve based approach
Wy Storage size for a certain datatype. ;E“ L[ S - I (Single- / Multi-Node).
4 Ratll(; of I?%TX l(ihanges T oL Jt c HCOO é;o T e N O B ) Prepare a comparative study of strong and weak
y number of blocks per nonzero entry in Hi . 5 el o ks VL
o o e m O R OB B e Implement further Tensor Operations based on the
COO maintains integer indices for every mode and every nonzero Bit-IF format.
entry. HiCOO exploits the hierarchical structure of sparse ten- 0.0 ' -
sors by storing blocks of nonzero entries, thus enabling the use of Q/Q\D & \Q\\Q’ 0\-\@‘} o \Q\\/\
smaller data types for block relative coordinate indices. HiCOO, & © A & ; gy
derived from C'OO, may incur memory overhead for tensors with For th o o @,%Eﬁ}:@
predominantly single-mode index changes due to limited compres- L rhese measurements, 32Tblt 1ptegers are us.ed .for COO indices "%,;;;,"‘ ot kg
sion for sparsely populated fibers. and' Bit-1F increments. While Bit-IF foers significant stqrage L ]:.O% |
Bit-IF reduces storage requirements by encoding index changes Savings over QOO (N2,7%)’ further improvements over HiCOO ;:_ .::E“TEF: s
. . . . are achievable with blocking and smaller data types for increments. r T :',I;EE
using bits and increments, allowing the use of smaller data types Unlike COO and HiCOO. Bit-IF eliminates the need for multio] @?ﬁﬂ"aq. =i
for the increments. Like HiCOO, Bit-IF can use a two-level block- e pie

based scheme [1]. tensor instances for different traversal orders. github.com /xniuuu/SparseTensorComputations




