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Bit-If Compression

Incremental Sparse Fibers with Bit Encoding (Bit-IF) was designed to address the limitations
of existing sparse tensor formats. It is based on incremental compression concepts previously explored
for sparse matrices.
Bit-IF ’s three central design guidelines are:

• Minimal prior knowledge: No extensive preprocessing or reordering of the input tensor indices
should be needed to perform TVM along arbitrary modes.

• Mode independence: With increments and bit encoding, Bit-IF avoids dependence on a
specific mode ordering, enabling flexible access and rearrangement of modes.

• Arbitrary index traversal: This concept allows for index access patterns that improve data
locality for specific tensor operations and performance optimizations besides mode independence.

Compression from COO
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Key Components

• Incremental Indexing: Tensor indices are represented as increments along each mode, reducing
storage overhead by capturing only the changes between consecutive indices.

• Bit Encoding: A compact bit vector encodes the presence and direction of increments for each
nonzero entry, enabling efficient traversal and storage.

Traversal Curve Based Approach to TVM

kth mode Tensor-Vector Multiplication (TVM)

A×k v = B, where A ∈ Rn0×n1×···×nd−1 , v ∈ Rnk , B ∈ Rn0×···×nk−1×1×nk+1···×nd−1 :

Bi0,...,ik−1,ik+1,...,id−1
=

nk∑
ik=0

Ai0,...,ik,...,id−1
· vik .

Traversal curves enable arbitrary tensor traversal for TVM, bypassing the computationally expensive
reordering of tensor entries before computation. This flexibility reduces preprocessing overhead, elim-
inates the need for multiple instances of the same tensor and ensures efficient access patterns across
different tensor modes.

Traversal Curves

Lexicographical Z-Curve Hilbert

Blocking vs Non-blocking

Blocking synergizes with traversal curves to enhance TVM efficiency by fitting smaller tensor segments
into the cache, optimizing data locality. It reduces data movement and computational overhead, thus
improving performance, especially for large tensors. However, when selecting an optimal block size,
special attention must be given to the often non-deterministic sparsity patterns, as it must balance
computational overhead, cache efficiency, and workload distribution.

Algorithms

Algorithm 1 From COO to Bit-IF

Input: Input indices in COO format

Output: ∆A, bA
1: Initialize ∆Aj for j = 0, . . . , d− 1

2: Store indices of COO i0,j in ∆Aj

3: Set bj = 1, j = 0, . . . , d− 1

4: for r = 0, 1, . . . , nnzA do

5: Compute increments ∆i = ir − ir−1

6: for each mode j = 0, . . . , d− 1 do

7: if ∆ij ̸= 0 then

8: Add ∆ij to ∆Aj

9: Add 1 to bA
10: else

11: Add 0 to bA
12: end if

13: end for

14: end for

d ∈ N Order of the tensor
nj Size of dimension/mode j
∆X Increment arrays of X
∆i Current increments
valX Non-zero values of X
bX Bit encoding array of X
VB Map storing the values of B

nnzX ∈ N Number of non-zero entries

Algorithm 2 TVM for Arbitrary Traversal Orders

Input: ∆A, bA, valA,v
Output: ∆B, bB, valB
1: Initialize temporary value T

2: for each set b in bA do

3: if only bi−k = 1 then

4: ik+1 += ∆ik−1

5: Update T += v(ik−1) · valA(ik−1)

6: else if bj = 1, j ̸= k − 1 or bk−1 = 0 then

7: for remaining modes j do

8: if bj = 1 then

9: Get ∆ij from ∆Aj

10: ij += ∆ij
11: else

12: j += 1

13: end if

14: end for

15: if any bj ̸=k−1 = 1 then

16: Get ikey of i0, . . . , id−2

17: Update VB(ikey) with i0, . . . , id−2 if not contained

18: valB(ikey)← T

19: end if

20: end if

21: end for

22: Compute ∆B, bB with UB according to Alg. 1

Performance Comparison
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Conversion

synthetic tensor (nnz = 108)
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delicious-4d (nnz = 1.4 · 108)
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Conversion

We compare the time to solution of Bit-IF and HiCOO
for TVM using different real-world and synthetic tensors.
We also explore the conversion time needed from an
initial COO presentation. We present PASTA’s and our
COO implementations as baselines, illustrating Bit-IF ’s
current unblocked implementation state and potential for
further improvements. The synthetic tensor — a
fourth-order tensor with identical dimensions and
nnz-rates — tests mode-dependent behavior.

Bit-IF vs. HiCOO Speedup (Sgeom):

4.20× TVM Computation | 5.08× Conversion

Comparative Storage Requirement Study

Theoretical Analysis

COO: nnzX ·
(
wval + d · wint

)
Bit-IF: nnzX ·

(
wval + d · wbit +

∑d−1
j=0 qj · winc,s

)
HiCOO: nnzX ·

(
wval + αb · wlong + αb · d · wint + d · wbyte

)
wval Storage size for a tensor value.
winc,s Storage size for short integer increments.
wx Storage size for a certain datatype.
qj Ratio of index changes in mode j.
αb number of blocks per nonzero entry in HiCOO.

COO maintains integer indices for every mode and every nonzero
entry. HiCOO exploits the hierarchical structure of sparse ten-
sors by storing blocks of nonzero entries, thus enabling the use of
smaller data types for block relative coordinate indices. HiCOO,
derived from COO, may incur memory overhead for tensors with
predominantly single-mode index changes due to limited compres-
sion for sparsely populated fibers.
Bit-IF reduces storage requirements by encoding index changes
using bits and increments, allowing the use of smaller data types
for the increments. Like HiCOO, Bit-IF can use a two-level block-
based scheme [1].
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For these measurements, 32-bit integers are used for COO indices
and Bit-IF increments. While Bit-IF offers significant storage
savings over COO (∼27%), further improvements over HiCOO
are achievable with blocking and smaller data types for increments.
Unlike COO and HiCOO, Bit-IF eliminates the need for multiple
tensor instances for different traversal orders.

Future Work

• Investigate impact of smaller data types for Bit-IF
increments paired with blocking.

• Further optimize the TVM traversal curve based
approach for single thread execution.

• Parallelize the TVM traversal curve based approach
(Single- / Multi-Node).

• Prepare a comparative study of strong and weak
scaling for the TVM.

• Implement further Tensor Operations based on the
Bit-IF format.

Thesis and Code

github.com/xniuuu/SparseTensorComputations


