
Learning and clustering graphs from high
dimensional data

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Dimosthenis Pasadakis

under the supervision of

Prof. Olaf Schenk

February 2023

Dissertation Committee

Prof. Illia Horenko Università della Svizzera italiana, Switzerland
Prof. Stefan Wolf Università della Svizzera italiana, Switzerland
Prof. Theodoros Damoulas University of Warwick, United Kingdom
Dr. Albert-Jan Yzelman Huawei Zürich Research Lab, Switzerland
Prof. Inderjit Dhillon University of Texas at Austin, USA

Dissertation accepted on 21 February 2023

Research Advisor PhD Program Director

Prof. Olaf Schenk Prof. Walter Binder, Prof. Stefan Wolf

i

Dms Pas

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Dimosthenis Pasadakis
Lugano, 21 February 2023

ii

Abstract

Estimating the graphical structures of high dimensional data and identifying the
presence of clusters in them are ubiquitous tasks in every scientific domain that
deals with interacting or interconnected variables. We participate in the advance
of these research fields with efficient and accurate algorithms that learn and clus-
ter graphs. Initially, we contribute in the development of a performant precision
matrix estimation routine based on the sparse quadratic approximation of the
`1 regularized Gaussian maximum likelihood method. The proposed method
exploits the presence of block structure in the underlying computations, and is
suitable for datasets characterized by reduced sparsity. Motivated by its effective-
ness in high dimensional problems, we extend the capabilities of this method to
the retrieval of graphs of only non-negatively correlated variables, and introduce
two algorithms for sparse M -matrix estimation. The first one is based on consec-
utive precision matrix estimations, while the second one performs constrained
optimization for the retrieval of the final graphical structure. Finally, we present
a nonlinear reformulation of direct multiway spectral clustering that is formu-
lated as an unconstrained minimization problem. Our method promotes sharp
indicator vectors that correspond to optimal graph cuts and improved clustering
assignments. The advantages of all introduced algorithms are showcased in a
series of comparative tests with the current state-of-the-art on artificial datasets,
and their real-world applicability is demonstrated with numerical experiments
on biological, medical, and image data.

iii

Acknowledgements

I consider this thesis as the conclusion of an enriching and enjoyable chapter.
The people mentioned here have played a key role in both these aspects.

Professor Olaf Schenk, you have simultaneously treated me as a colleague
since early in our academic interaction, and supported me as a student personally
and professionally. This has liberated me in a multitude of ways, and has allowed
me to work and produce with joy. Professor Matthias Bollhöfer, I feel fortunate
to have collaborated with you. You have expanded my scientific interests, and
made me more competent along the way. Dr. Drosos Kourounis, you have defined
the way I think in science. They say life is composed of distinct turning points,
and maybe that’s a platitude. Coming to Lugano, following your suggestion,
certainly feels like such a moment for me. Professor Gerhard Wellein and Dr.
Albert-Jan Yzelman the opportunities you have granted me to work with you
and your groups have been defining moments in my career so far. Professor
Stefan Wolf, you have fostered an environment of living and thinking that has
marked these past years for me, and for many people that I care for. Aryan,
your tenacity in work, among other of your unique traits, is an inspiration to me,
and Christie working and spending time with you is such a pleasure. Professor
Theodoros Damoulas, Professor Illia Horenko, and Professor Inderjit Dhillon, I
deeply appreciate your acceptance to be part of my committee, and the time and
effort you have devoted in reviewing my work.

To the friends that live far, but feel close, you’ve made every transition smoother
and easier. To the ones that live close, and share their everyday lives with me,
these years have shaped us. To my family, that made every step of the way pos-
sible, we are what we have always been - the greatest team. For my partner,
that just makes everything so much better, I have to come up with new ingenious
ways to express all my appreciation. And to our cat, that is our leader at home,
and constantly reminds us what comfort means, you get a treat tonight.

Thank you all.

iv

Contents

1 Introduction 1
1.1 Estimating graphical structures . 1
1.2 Clustering graphical clustures . 3
1.3 Outline and notation . 3

I Sparse graph learning 5

2 Graphical model estimation 7
2.1 Factorization and conditional independency 8
2.2 Gaussian graphical models . 10

2.2.1 Sparsity considerations . 11
2.3 `1 regularized negative log-likelihood 13
2.4 M -matrices . 14

2.4.1 Connection to graph Laplacians 15
2.5 Related work on graph learning . 17

2.5.1 Precision matrix estimation 17
2.5.2 M -matrix estimation . 18

3 Sparse quadratic approximation for graph learning 20
3.1 Quadratic approximation . 20

3.1.1 Motivation . 21
3.1.2 The quadratic model . 22
3.1.3 Newton direction via coordinate descent 23
3.1.4 Reducing the size of the search space 24
3.1.5 Step size computation . 25
3.1.6 Key steps and computational challenges 26

3.2 The SQUIC algorithm . 26
3.2.1 Sparse sample covariance matrix 28
3.2.2 Matrix regularization parameter 28

3.3 Exploiting block structure . 29
3.3.1 Supernodal sparse Cholesky factorization 30

v

vi CONTENTS

3.3.2 Block approximate matrix inversion 32
3.3.3 Block coordinate descent update 36

3.4 Sparse M -matrix estimation . 36
3.4.1 A post processing approach 37
3.4.2 A constrained optimization approach 39

4 Numerical results for graph learning 43
4.1 Estimating precision matrices . 43

4.1.1 Comparisons with other methods 46
4.1.2 Scalability . 48
4.1.3 Classification of microarray data 48

4.2 Estimating M -matrices . 51
4.2.1 Comparisons with other methods 53
4.2.2 Incorporating graphical bias 56
4.2.3 Clustering of COVID-19 daily cases 58
4.2.4 Image classification . 60

II Nonlinear spectral clustering 64

5 Spectral methods for graph clustering 66
5.1 Graphs and graph cut metrics . 67
5.2 Spectral bipartitioning . 68
5.3 Bipartitioning with the graph p-Laplacian 70
5.4 Direct multiway spectral clustering 72
5.5 Related work on p-spectral methods 74

6 Direct multiway p-spectral clustering 75
6.1 Motivation for multiple p-eigenvectors 75
6.2 A Grassmannian approach to p-spectral clustering 78

6.2.1 Optimization techniques . 80
6.2.2 Discretizing the p-eigenvectors 82
6.2.3 Multiway p-Grassmann clustering algorithm 83

7 Numerical results for graph clustering 85
7.1 Experiments with artificial data . 88

7.1.1 Reducing the value of p . 89
7.1.2 Increasing the number of clusters 92
7.1.3 p-spectral embedding . 94

7.2 Experiments with real-world data . 95
7.2.1 Classification of facial image datasets 96
7.2.2 Classification of handwritten characters 97

vii CONTENTS

7.2.3 Discussion of real-world results 98

8 Conclusions 100

A Derivation of gradient and Hessian for the pGrass algorithm 102

B Full list of clustering numerical results 104

Bibliography 107

Chapter 1

Introduction

Representing data in the form of graphs and discovering groups of interest in
them are problems with application fields that span many disciplines. Graphs
are fundamental mathematical entities with nodes (or vertices) and edges con-
necting them. The relationship between two connected nodes is usually captured
by the scalar weight value of the edge that links them. In many domains, data
is commonly available in the form of an unstructured list of samples or vari-
ables, with no available relational information among them. The construction
of the latent graphical structure of such a dataset often offers an intuitive repre-
sentation, and, subsequently, the identification of clusters within this structure
further enhances one’s insight on it. Due to the ever-growing size of data than
can be stored and analyzed, performing learning and clustering tasks in high-
dimensional scenarios, where the number of dimensions surpass the number of
available observations, is of critical importance.

1.1 Estimating graphical structures

Undirected weighted graphs, with edges representing the conditional depen-
dence among the variables, are typically constructed with a Gaussian graphical
modeling (GGM) approach [1]. In this context, each vertex corresponds to a
variable, with edges being present between the vertices only if they are condi-
tionally dependent. These dependencies among the data points can be both pos-
itive and negative, and are encoded in a matrix that represents the graph, whose
non-zero entries correspond to the dependencies between two variables. This
matrix is the inverse of the covariance matrix, also known as the precision ma-
trix, and encodes the positive definite graphical structure of a Gaussian Markov
random field (GMRF) [2]. A common prior imposed on the estimation of the

1

2 1.1 Estimating graphical structures

precision matrix is that the conditional correlations among the random variables
are sparse [3], i.e., that there is a limited number of conditional correlations
between the variables. This prior corresponds to imposing a degree of sparsity
on the estimated precision matrix, and a widely used approach for this is the `1

regularized maximum likelihood estimation (MLE), commonly referred to as the
“graphical LASSO” [4]. This method minimizes the negative log-likelihood of the
data in question, and considers an `1 regularization term that enforces the much
desired sparsity property in the estimates. A popular solution approach for this
problem is to quadratically approximate this objective, and solve the resulting
series of minimization problems with a proximal Newton method [5, 6]. This
technique enjoys superlinear convergence rates, and, as an attribute of the regu-
larization that is employed, successfully reduces the size of the variables that will
be updated. However, for high dimensional datasets the estimation of precision
matrices continues to pose a computational challenge, particularly in cases that
exhibit reduced sparsity in their estimates. The Sparse QUadratic Inverse Co-
variance matrix estimation (SQUIC) algorithm [7, 8] continues the progress on
large-scale, second-order methods by exploiting the inherent sparsity in the un-
derlying linear algebra operations. This thesis contributes to this field of research
with block-oriented algorithmic routines that further accelerate the retrieval of
precision matrices, enhance the performance of SQUIC, and enable its applica-
bility on a wide range of real-world problems which exhibit limited sparsity [9].

Graphical models under the constraint that all partial correlations are non-
negative is an important subclass of GGMs. The problem of finding variables that
are non-negatively correlated corresponds to enforcing an M -matrix structure
on the precision matrix [10, 11]. Therefore, MLE methods are faced with the
additional challenge that the optimization problem is now constrained, and aims
to retrieve positive definite and symmetric precision matrices restricted to non-
positive off-diagonal elements. This problem has attracted a lot of attention, and
is featured in recent graph learning surveys [12, 13]. However, the applicability
of the proposed approaches is limited for large-scale and real-world data. We
tackle these limitations, and extend the concept of quadratically approximating
the `1 regularized MLE minimization problem to the estimation of M -matrices.
In [14] we introduce two algorithms that learn high-dimensional graphs of only
non-negatively correlated random variables, one based on consecutive precision
matrix estimations, and one based on a constrained optimization approach.

3 1.2 Clustering graphical clustures

1.2 Clustering graphical clustures

Among a plethora of applications, M -matrices are commonly used in partitioning
applications [15, 16], and their spectrum is utilized in graph clustering tasks [17,
18]. Spectral clustering is a popular graph-based method due to the simplicity of
its implementation, the reasonable computation time, and the fact that it over-
comes the NP-hardness of other graph-theoretic approaches by solving a relaxed
optimization problem in polynomial time. Its idea is based on the eigendecompo-
sition of matrices that describe the connectivity of a graph [19]. Reformulating
the spectral method from the traditional 2-norm to the p-norm, for p 2 (1, 2], has
proven to lead to a sharp approximation of balanced cut metrics and improved
clustering assignments [20]. Additionally, these nonlinear reformulations result
in a tight relaxation of the spectral clustering problem, with the resulting solu-
tions approximating closely the solution of the original discrete problem [21].
The graph cut theoretically converges to the optimal Cheeger cut [22] for p! 1,
thus highlighting the superiority of p-spectral methods over their traditional 2-
norm counterparts [23]. The resulting indicator functions exhibit non-smooth
jumps between nodes belonging to different groups of a graph, and are thus
particularly well suited for clustering applications [24]. We contribute in this
research field by recasting this problem as an unconstrained optimization proce-
dure over the Grassmann manifold [25], and by proposing a simple algorithm
for direct multiway (or k-way) p-spectral clustering that effectively minimizes
graph cuts [26].

1.3 Outline and notation

This document is composed of two parts; in Part I we discuss the problem of
estimating graphical structures from data through MLE methods, and in Part II
we present research related to the nonlinear spectral clustering of graphs. In
particular, we begin in Chapter 2 with offering a brief background on the estima-
tion of precision and M -matrices, and proceed in Chapter 3 with introducing the
sparse quadratic approximate methods that lead to their efficient and accurate
retrieval. Numerical experiments that showcase the capabilities of the proposed
graph learning methods are offered in Chapter 4. Then, in Chapter 5 we revisit
the problem of performing spectral and p-spectral clustering, and in Chapter 6 we
introduce our algorithm for the direct clustering of multiple eigenvectors of the
graph p-Laplacian, a nonlinear reformulation of the traditional graph Laplacian
matrix. The numerical results that support the efficacy of this method are of-

4 1.3 Outline and notation

fered in Chapter 7. The author’s contributions in the aforementioned areas have
additionally been published in [9, 26, 27], and are under review in [14, 28].

In what follows, we denote scalar quantities with lowercase, vectors with
lowercase bold, and matrices with uppercase bold characters. The (i, j)th entry
of a matrix A is symbolized by Ai j and all entries in row i or column j by Ai: and
A: j, respectively. The ith element of a vector v is denoted by vi. The ith column
vector of a matrix V is denoted by either vi, or vi. The latter is used in case that
the subscript is occupied by the element index number or the norm of the vector.
For example, when comparing the ith eigenvector computed in the 2 and the
p-norm, we denote them as vi

2 and vi
p respectively. Sets are denoted by capital

calligraphic characters, for example, A, the identity matrix as I and the vector
of all ones as e.

Part I

Sparse graph learning

5

Chapter 2

Graphical model estimation

Graphical models are a statistical framework widely used for estimating the graph-
ical structure of high dimensional data. Any collection y =

�
y1, y2, . . . , yp

�
of

random variables can be associated with an underlying graph G(V, E), charac-
terized by its node set V = {1,2, . . . , p} and edge set E = V ⇥ V . The properties
of G dictate the conditional independence of the variables in y. Typically, this
latent graphical structure is unknown a priori; hence, it is desirable to estimate
the graph’s edge set using the available samples. Applications of this problem
abound in scientific fields, including computer vision [29], social science [30],
finance [31], and biology [32], where it may be desirable to infer the connectivity
between individual pixels, people, financial institutions, or genes. Our focus is
on undirected graphical models, also known as Markov random fields, for which
no direction exists in the edges of G and there is no distinction between an edge
specified by the node pairs (i, j) and (j, i) 2 E. This naturally leads to symmetric
matrices that capture the connectivity of the underlying graph. Additionally, we
are interested in scenarios commonly encountered in real-world datasets, where
the number of nodes p, or dimensions of the problem, far exceed the number of
available samples n, or observations.

In this chapter we do not intend to review all the fundamental properties of
graphical models. For that purpose [33] and [34] serve as excellent sources. We
hereby confine ourselves to the most relevant topics, and begin in Section 2.1 by
outlining the factorization and conditional independence properties of a graph.
Subsequently, in Section 2.2 we narrow our focus on graphs emerging from dis-
tributions assumed to be Gaussian and discuss the retrieval of precision matrices
that capture the underlying structure and conditional dependence between the
random variables. Then, in Section 2.3 we recap a popular approach that in-
duces the desirable property of sparsity in precision matrices by regularizing the

7

8 2.1 Factorization and conditional independency

estimates. In Section 2.4 the problem of retrieving M -matrices, with non-zero
entries that are positively correlated, is outlined, and, last, in Section 2.5 we
present the landscape of existing solution methods for Gaussian graphical model
estimation.

2.1 Factorization and conditional independency

The probabilistic structure of a random vector can be related to the structure
of a graph through its factorization and conditional independence properties,
which are based on the existence of cliques and the node cut set of the graph,
respectively. A clique C ✓ V of a graph G is defined as a fully connected sub-
graph of its node set V , i.e., for an edge connecting two vertices i, j we have
that (i, j) 2 E 8 i, j 2 C . Maximal cliques are fully connected subgraphs that
are not contained within any other clique. The clique set C of a graph may be
used to characterize the probability distribution, or density function, of the p-
dimensional random vector y = (y1, y2, . . . , yp). For each given clique C ⇢ C a
real valued positive function C of the vector yC = (yi, i 2 C) is associated with
it. Then, a probability distribution P factorizes over the graph if

P(y1, y2, . . . , yp) =
1
Z

Y

c2C
 C(yC), (2.1.1)

with Z being the function given by the sum

Z =
X

y1,y2,...,yp

Y

C2C
 C(yC). (2.1.2)

We consider as an illustrative example the clique structure of the graph in Fig-
ure 2.1a. Any probability distribution that factorizes over it is of the form

P(y1, . . . , y9) =
1
Z
 1234(y1, y2, y3, y4) 457(y4, y5, y7)

 56(y5, y6) 789(y7, y8, y9). (2.1.3)

In the following subsection 2.2 we will see the form that such probability distri-
butions attain when the underlying data is assumed to be Gaussian.

A second way in which graphical structure can be related to the probabilistic
properties of a random vector is via conditional independency. For undirected
graphs, this property can be specified in terms of the node cut sets of the graph.
A vertex subset S is the collection of entries of V that, if removed, separates the

9 2.1 Factorization and conditional independency

1

2

3

4

5
6

7

8

9
A

B

C

D

(a)

1

1

1

1

1
1

1

1

1
A

Ā

S

1

(b)

Figure 2.1: Illustration of the ways a graphical structure can be related to the
probabilistic properties of a random vector. (a) Maximal clique structure of a graph
with 9 nodes. (b) Node cut set of graph, that separates it into two disconnected
components A and Ā. Based on concepts from [33].

graph into two or more disconnected subsets. Looking again into this relationship
illustratively, removing the subset S in Figure 2.1b, comprising of nodes 5 and 7,
splits the graph into two disconnected components, A with nodes 1,2, 3,4 and its
complement Ā with nodes 6,8, 9. In this example, A is conditionally independent
from Ā, with this relationship denoted as ??. The random vector y exhibits the
Markov property with respect to the graph G as

yA ?? yĀ| yS 8 vertex cut sets S ⇢ V. (2.1.4)

This property has a particular interpretation for chain graphs, which capture the
graphical structure of a Markov chain process [33]. Their edge set is

E = {(1,2), (2, 3), . . . , (p� 1, p)}, (2.1.5)

and any vertex i 2 {2,3, . . . , p � 1} forms a cut set separating the graph into
past A = {1, . . . , i � 1} and future nodes Ā = {i + 1, . . . , p}. The conditional
independence relation then reads

yA = (y1, y2, . . . , yi�1)| {z }
Past

?? yĀ = (yi+1, yi+2, . . . , yp)| {z }
Future

| yi|{z}
Present

, (2.1.6)

and translates to the fact that the past and the future of a Markov chain process
are conditionally independent given the present [35].

These two probabilistic properties, the factorization and the Markov property,
are equivalent for undirected graphical models as demonstrated in the Hammersley-
Clifford theorem [36]. This critical equivalence states that positive distributions

10 2.2 Gaussian graphical models

P(y) factorize the graph G if and only if the random vector y exhibits the Markov
property on the graph.

2.2 Gaussian graphical models

Gaining insights into complex continuous phenomena requires characterizing the
relationships within multivariate distributions. In many domains, it is considered
that the underlying data is Gaussian. This hypothesis is primarily based on the
central limit theorem [37], and on the fact that the normal distribution arises
from maximizing the entropy across all real valued distributions with specified
mean and variance [38]. Hence, estimating the mean, the covariance matrix and
it’s inverse of Gaussian distributions are ubiquitous tasks. The resulting graphical
models capture the conditional dependencies between the random variables in
the form of a network, which in turn is encoded in the entries of the inverse
covariance, or precision, matrix.

In order to estimate such models we consider Y 2 Rp⇥n to be n data samples
drawn by a Gaussian distribution N(µ,⌃) in p dimensions with mean µ 2 Rp and
covariance matrix ⌃ 2 Rp⇥p. The probability distribution is then a special form
of 2.1.1 and is defined as

Pµ,⌃(yi) =
1

(2⇡)
p
2 det [⌃]

1
2

exp
Å
�1

2
(yi �µ)¸⌃�1(yi �µ)

ã

=
1

(2⇡)
p
2 det [⌃]

1
2

exp
Å
�1

2
tr⌃�1(yi �µ)(yi �µ)¸

ã
, (2.2.1)

where we have used the trace operator to rearrange the quadratic part of the
exponent [39]. In order for (2.2.1) to result in a well-defined probability func-
tion the covariance matrix ⌃ must be positive definite, i.e., for any x 2 Rp such
that x 6= 0 we must have that x¸⌃x > 0. Positive definite matrices are non-
singular, and hence the determinant appearing in the denominator of (2.2.1) is
nonzero. This property also ensures that the inverse of the covariance matrix
will be positive definite itself. Considering a Gaussian distribution whose mean
is the all-zero vector 0, and denoting the precision matrix as⇥ = ⌃�1 the rescaled

11 2.2 Gaussian graphical models

negative log-likelihood function for the distribution (2.2.1) reads

L(⇥) = �1
n

nX

i=1

log P0,⌃(yi)

= � logdet⇥+ tr

Ç
⌃�1 1

n

nX

i=1

yiy
¸
i

å

= � logdet⇥+ tr(S⇥), (2.2.2)

where S is the empirical, or sample, covariance matrix defined as

S=
1
n

nX

i=1

yiy
¸
i , (2.2.3)

for zero mean distributions. The objective function (2.2.2) is strictly convex with
a unique minimum, and its minimization defines the maximum likelihood esti-
mator

b⇥MLE = arg min
⇥

L(⇥), (2.2.4)

denoted also as MLE. The MLE converges to the true precision matrix b⇥ = S�1 =
⌃�1 when the sample size n !1. It is a common phenomenon, however, in
real-world problems to have a number of nodes p of the same order of mag-
nitude, or even larger than the number of available samples n. In these low
sampling regimes we have that S º 0 and thus the empirical covariance matrix
does not accurately model the true covariance. Moreover, S cannot be inverted
in order to obtain an estimate of the precision matrix, thus the MLE problem is
not well defined. Additionally, the estimate b⇥ can be ill-conditioned even when
n � p. Therefore, constrained or regularized variants of the MLE method must
be considered.

2.2.1 Sparsity considerations

Regardless of the ratio between the available samples and the dimensionality of
the MLE problem, enforcing sparsity in the retrieved precision matrix has addi-
tional advantages. In the context of undirected Gaussian graphical models, the
zero entries entries in the precision matrix indicate conditional independence
between the random variables. In particular, a collection of random variables
Y with an associated precision matrix ⇥ is a Gaussian Markov Random Field
(GMRF) with respect to the underlying graph G(⇥). The graph’s edge structure

12 2.2 Gaussian graphical models

v1 v2

v3

v4

v5

(a)

Sparsity pattern of ⇥

(b)

Figure 2.2: Illustration of the ways a graphical structure can be related to the prob-
abilistic properties of a random vector. (a) An undirected graph G with 5 vertices
and 6 edges. (b) The associated sparsity pattern of the precision matrix ⇥. Zero en-
tries are depicted with white, diagonal entries with gray, and nonzero off-diagonal
entries with red squares.

E then reflects the nonzero pattern of ⇥. For any pair of nodes (i, j) for which
⇥i j = 0 we have that (i, j) 62 E. We illustrate this correspondence in Figure 2.2
for an undirected graph. Sparsity of the true precision matrix is a prevailing as-
sumption [40, 41], and models which only involve a small number variables, i.e.
sparse models, are inherently simpler [42]. Thus, it is often preferable to retrieve
the structure of complex phenomena with a sparse model, that is easier to inter-
pret [43]. Additionally, in many applications it is assumed that few conditionally
dependent factors govern the overall behavior of the model, see for example the
sparsity imposed in financial [44] and brain studies [45]. Similar arguments in
favor of sparsity are commonly encountered in Bayesian approaches for the re-
trieval of Gaussian graphical models [46], and in approximate techniques that
scale variational inference in Gaussian processes to large datasets [47, 48].

As a consequence, the problem of learning sparse undirected Gaussian graph-
ical models in high dimensional settings has been central in machine learning,
statistics and optimization. A class of algorithms that focuses on estimating
sparse precision matrices is based on the graphical lasso [4, 49], which applies
an `1 penalty to the negative log-likelihood function 2.2.2. We discuss in the
following section the problem formulation for the graphical lasso, and outline
alternative sparse estimation methods in Section 2.5.1.

13 2.3 `1 regularized negative log-likelihood

2.3 `1 regularized negative log-likelihood

Let Y 2 Rp⇥n be once more a dataset of n independently drawn samples from a p-
variate Gaussian distribution characterized by a precision matrix ⇥ 2 Rp⇥p and a
mean µ 2 Rp. Given a matrix sparsity parameter ⇤ 2 Rp⇥p with positive elements
⇤i j > 0, the negative `1 regularized log-likelihood function can be written as the
sum of two parts,

f (⇥) =L(⇥) + h(⇥), where

L(⇥) = � logdet(⇥) + tr(⇥S), and h(⇥) = k⇤�⇥k1.
(2.3.1)

The estimated precision matrix is the solution of the minimization problem

b⇥ = argmin
⇥�0

f (⇥). (2.3.2)

The likelihood, i.e., the first component L(⇥) of the objective function (2.3.1)
is smooth and strictly convex, as ⇥ � 0 and thus r2

L(⇥) � 0. Its gradient and
hessian are defined as [50]

rL(⇥) = S�⇥�1 and H =r2
L(⇥) = ⇥�1 ⌦⇥�1. (2.3.3)

With h(⇥), the second component of f (⇥), being also convex for ⇤i j > 0, we
have that (2.3.1) is strongly convex with b⇥ its unique minimizer, even for rank
deficient systems with n < p. The first order optimality conditions of (2.3.2)
read

@ f (⇥) =rL(⇥) +⇤�⌅, with ⌅ =

®
sign(⇥i j), if ⇥i j 6= 0,

[�1,+1], if ⇥i j = 0,
(2.3.4)

with the subgradient denoted as @ .

This convex composite optimization problem enjoys significant computational
advantages when the sought precision matrices have block diagonal structure [51,
52], as the final solution can be composed by the individual result of each block.
We will exploit this and other advantages of performing block computations in
the following Chapter 3, where we introduce a high performance algorithm based
on the graphical lasso for the retrieval of precision matrices.

14 2.4 M -matrices

2.4 M -matrices

Matrices that arise from Markov processes in probability and statistics often have
some particular structure [53]. One of the most frequent occurrences is when
the matrix ⇥ under consideration includes non-positive off-diagonal and non-
negative diagonal elements, i.e., when ⇥ is a finite matrix of the type

⇥ =

2
664

⇥11 �⇥12 �⇥12 · · ·
�⇥21 ⇥22 �⇥23 · · ·
�⇥31 �⇥32 ⇥33 · · ·

...
...

... . . .

3
775 , (2.4.1)

with non-negative entries ⇥i j � 0. In the context of multivariate statistics, the
problem of retrieving precision matrices of the form (2.4.1) corresponds to find-
ing only the variables that are non-negatively correlated. The resulting matrices
are referred to as M -matrices [10, 11], and are part of the symmetric set

SM =
�
⇥ 2 Rp⇥p|⇥i j = ⇥ ji ∂ 0, 8 i 6= j, ⇥ � 0

, (2.4.2)

where � denotes positive definiteness. When matrices of the set (2.4.2) encode
the graphical structure a Markov random field, they induce total positivity be-
tween the random variables, which is a special form of positive dependence.
This property stems from the fact that the precision matrix having nonpositive
off-diagonal entries is equivalent to the existence of nonnegative partial correla-
tions �⇥i j/

p
⇥ii⇥ j j [10]. The underlying distribution of such undirected Gaus-

sian graphical models is called multivariate totally positive of order 2, or MTP2.
A probability distribution P on Rp is MTP2 if

P(x)P(y) P(x^ y)P(x_ y), 8 x,y 2 Rp, (2.4.3)

with^,_ denoting the coordinate-wise maximum and minimum respectively [54].
In particular, a multivariate Gaussian distribution with mean µ and a positive
definite covariance matrix ⌃ is MTP2 if and only if the precision matrix is a sym-
metric M -matrix in the set (2.4.2), with such models also known as attractive
Gaussian Markov random fields [55].

It has been proven in [56] that for the negative log-likelihood function L(⇥)
the optimizer

b⇥ = arg min
⇥2SM

L(⇥), (2.4.4)

15 2.4 M -matrices

exists and is unique for

Si j <
∆

S j jSii, 8 i 6= j, and Sii > 0 8 i, (2.4.5)

i.e., as long as no two variables i, j are perfectly positively positively correlated,
and no variable i is constant. In contrast to the unconstrained MLE estimator
(see Section 2.2), b⇥ exists for n � 2, thus, the estimator (2.4.4) is well defined
in the high dimensional regime p > n [57]. Additionally, for MTP2 distributions,
similarly to (2.1.4), it holds that two random variables yi,y j are conditionally
independent if and only if i, j are separated in the underlying graphical structure
G(⇥) [58].

Nevertheless, the arguments for sparsity in the retrieved graphical structures
of Section 2.2.1 regarding performance and explainability of the results hold
when estimating M -matrices from high dimensional attractive GMRFs. It is there-
fore common practise to include an `1 regularization terms in the minimization
objective of (2.4.4) to promote sparsity in the estimates. The graphical lasso
estimator is now constrained to the set (2.4.2), and defined as

b⇥ = argmin
⇥2SM

L(⇥) + k⇤�⇥k1. (2.4.6)

The retrieved M -matrices b⇥ are tightly connected with the combinatorial graph
Laplacian, a matrix with numerous applications in graph learning and clustering
tasks. We analyze this connection in the following section, and list alternative
methods for M -matrix estimation in Section 2.5.2.

2.4.1 Connection to graph Laplacians

The combinatorial graph Laplacian L 2 Rp⇥p is a symmetric positive semidefinite
matrix. If we allow ⇥ º 0 in (2.4.2), then graph Laplacians would be part of the
subset of M -matrices

SL = {⇥ 2 Rp⇥p|⇥i j = ⇥ ji ∂ 0 8i 6= j;

⇥ii = �
X

j:i 6= j

⇥i j, ⇥ º 0}. (2.4.7)

The constant vector of ones e lies in its nullspace, i.e. L · e= 0, because the row
and column sums of L are zero, i.e. Lii+

P
i 6= j Li j = 0. A very important property

of the spectrum of L is that the multiplicity of the zero eigenvalue corresponds
to the number of connected components k of the graph [15]. This also implies

16 2.4 M -matrices

W12

W23

W14

W24

W34

v1

v2

v3v4

W =

2
64

0 A12 0 W14
W12 0 W23 W24

0 W23 0 W34
W14 W24 W34 0

3
75 ,

Dii =

2
664

P
j W1 jP
j W2 jP
j W3 jP
j W4 j

3
775 , L= D�W.

Figure 2.3: A simple, undirected, and connected graph G(V, E,W) with 4 vertices
and 5 edges, with its weighted adjacency W, degree D, and combinatorial graph
Laplacian L matrices.

that the Laplacian matrix is singular with rank p� k > 0. We then consider that
L encodes an improper GMRF (IGMRF) [2, 59] of rank p � k, as opposed to ⇥
in (2.4.2) which is of full rank.

An undirected weighted graph G(V, E,W), as illustrated in Figure 2.3, is de-
fined by its node set V = {1, 2, . . . , p} representing the data points, and the sim-
ilarity between the edges E which is encoded in the elements of the weighted
adjacency matrix W 2 Rp⇥p. Its combinatorial graph Laplacian L can be un-
derstood in terms of W, that encodes the weights Wi j � 0 of the edges, and
the diagonal degree matrix D 2 Rp⇥p, which captures the degree of each node
Dii =

Pp
j=1 Wi j, as L = D �W. The positive entries of W, or equivalently the

negative off-diagonal entries of L, represent the edge weights of a graph, while
zero entries Wi j = 0, i 6= j, imply that there is no connection between nodes i
and j. For a simple and undirected graph we additionally consider that Wii = 0,
and Wi j =W ji. The graph Laplacian is often also realized as the linear operator
whose action on a vector u 2 Rn induces the following quadratic form

hu,Lui= u¸Lu=
1
2

nX

i, j=1

Wi j

�
ui � uj

�2
, (2.4.8)

demonstrating the positive semidefiniteness of L. The eigenvalues of L can be
ordered as �1  �2  · · ·  �n, with the eigenvector associated with �1 = 0
being the constant one, i.e., v(1) = c · e, where c 2 R.

Different variants of graph Laplacian matrices have also been extensively
studied. The normalized symmetric Lsym = D�1/2LD�1/2 and random walk Lrw =
D�1L Laplacians [60] are both scaled by the degree of the edges and have been

17 2.5 Related work on graph learning

successfully used for clustering tasks [17, 18, 61]. Additionally, nonlinear refor-
mulations of the graph Laplacian from the traditional 2-norm to the p-norm for
p 2 (1,2] have proven to lead to a sharp approximation of balanced cut metrics
and improved clustering assignments [23, 62].

All abovementioned graph Laplacian variants can be constructed after ob-
taining the weights of the graph’s edges, encoded in the adjacency matrix W.
Following the M -matrix estimation routines introduced in Chapter 3 we can es-
timate the non-negatively correlated variables of a GMRF, and then set W = �b⇥.
The appropriate type of graph Laplacian is subsequently built according to the
application at hand.

2.5 Related work on graph learning

We present here a short overview of the various available precision and M -matrix
estimation methods. Accuracy and performance comparisons with some of these
algorithms are offered in Chapter 4.

2.5.1 Precision matrix estimation

There are two main groups of methods for the estimation of undirected Gaus-
sian graphical models in the high dimensional setting. A first class attempts to
directly recover the precision matrix through the solution of the `1 regularized
MLE problem (2.3.1). The graphical lasso problem was first addressed in [4]
with a pathwise-coordinate-descent approach, and in [49] with a block coordi-
nate descent and an accelerated gradient descent method. The convexity of the
problem also enables the usage of interior point methods [42, 63], and more
recently, of second-order methods [64, 65]. The second-order approach pre-
sented in [5, 6], and extended in [66] for large scale computations, is based on
a quadratic approximation of the MLE problem. This method inspired the devel-
opment of Sparse QUadratic Inverse Covariance matrix estimation (SQUIC), a
performant and parallel precision matrix estimation routine presented in [7, 8].
We contribute in this state-of-the-art solution method with algorithmic routines
presented in Chapter 3.

Parallel to the graphical lasso approach, many recent methods have been pro-
posed to estimate precision matrices using alternative objectives. For example,
the authors in [67, 68] utilize the coordinate wise minimization of a regression-
based formulation which has been shown to have robust model selection proper-
ties compared to other Gaussian approaches. In [69] and [70] the explicit recov-

18 2.5 Related work on graph learning

ery of the edges that belong to the graphical model is achieved through condi-
tional independence tests and neighborhood selection, respectively. Alternative
approaches include EQUAL [71], which utilizes the penalized quadratic loss func-
tions introduced in [72], and FASTCLIME [73, 74, 75] which casts sparse preci-
sion matrix estimation as a linear programming problem and solves it with the
parametric simplex algorithm. In [40] an edge-cardinality constrained negative
log-likehood problem is solved with mixed-integer optimization techniques and
ridge regularization. Last, the MDMC algorithm [76] approximates the graphical
lasso problem by soft thresholding the sample covariance matrix and performing
a maximum determinant matrix completion.

2.5.2 M -matrix estimation

Naturally, many of the methods employed for the retrieval of non-negatively
correlated variables from GRMFs are based on algorithms initially proposed for
precision matrix estimation, since M -matrix estimation can be viewed as a con-
strained version of the MLE under Gaussianity assumptions. Our proposed algo-
rithms for M -matrix retrieval are based on the sparse quadratic approximation of
the constrained MLE objective (2.4.6), and are presented in the following Chap-
ter 3. In [56] M -matrices are estimated with a sign-constrained log-determinant
divergence minimization algorithm without regularization, thus limiting the ap-
plicability of the algorithm to smaller datasets. In the same work, the fact that an
a-posteriori thresholding of the off-diagonal entries of the precision matrix suc-
cessfully retrieves matrices that encapsulate only the positively correlated vari-
ables is established. In [77] an algorithm based on conditional independence
testing that does not require any tuning parameters is proposed that estimates
only the graphical structure without the weights. In [78] the optimization prob-
lem is solved with an alternating direction method of multipliers (ADMM) algo-
rithm with LASSO and adaptive LASSO penalties.

Graph Laplacian matrices are singular, with their off-diagonal entries captur-
ing the weight of the edges of the graph in reversed sign. Thus, their retrieval
entails additional difficulties from an optimization perspective. Here, the initial
work of Lake and Tenenbaum [79] focuses on the optimization of an `1 regu-
larized MLE problem by adding positive constant values to the diagonal entries
of the graph Laplacian to account for its singularity and enforce positive defi-
niteness. In [80], the authors build upon their previous work in the field [81],
and propose a framework for the estimation of graph Laplacian matrices by in-
troducing new problem formulations with sign and structural (i.e., connectivity)
constraints, and develop tailored algorithms for these problems using again an

19 2.5 Related work on graph learning

`1 regularization term to enforce sparsity. Similarly, the work in [59] converts
combinatorial structural constraints into spectral ones on graph matrices, and
develops an optimization framework based on block majorization-minimization.
In [82] nonconvex regularization terms are proposed in order to enforce sparsity
in the retrieved matrices.

Additionally, various M -matrix learning algorithms have been proposed based
on the assumption that the graph structure emerges from a set of smooth signals.
The authors in [83] adopted a factor analysis model, and imposed a Gaussian
probabilistic prior on the latent variables that control these signals, in order to
obtain a graphical representation. In [84] the same problem is formulated as a
weighted `1 minimization, and in [85] a scalable variant is proposed that uti-
lizes approximate nearest neighbors techniques to reduce the dimensionality of
the problem.

Chapter 3

Sparse quadratic approximation for

graph learning

The estimation of precision matrices is a challenging problem in high dimensional
settings, with the maximum likelihood problem being ill-posed and potentially
ill-conditioned. Regularization with the `1-norm is commonly used to circum-
vent these issues and to induce sparsity in the estimates. However, scenarios
where the number of dimensions far exceed the available samples still present
difficulties attributed to the significant increases in computational costs. In this
chapter we present our Sparse QUadratic Inverse Covariance matrix estimation
(SQUIC) method, a second-order approach for the retrieval of large-scale preci-
sion matrices, that addresses the computational challenges associated with the
graphical lasso problem. We begin in Section 3.1 with the quadratic approxi-
mation of the problem, which is the basis upon our method is developed. The
SQUIC algorithm is presented in Section 3.2, and its optimized components that
exploit the presence of block structure in Section 3.3. Last, in Section 3.4 we
extend the idea of sparse quadratic approximation to M -matrices, and introduce
two algorithms for their retrieval.

3.1 Quadratic approximation

We consider again n independent and identically distributed samples Y 2 Rp⇥n

of a p-variate Gaussian distribution N(µ,⌃), with the true covariance matrix and
mean denoted as ⌃ 2 Rp⇥p and µ 2 Rp, respectively. The graphical lasso problem

20

21 3.1 Quadratic approximation

for the retrieval of the precision matrix ⇥ reads

b⇥ = argmin
⇥�0

8
<
:� logdet(⇥) + tr(⇥S)| {z }

L(⇥)

+k⇤�⇥k1| {z }
h(⇥)

9
=
; , (3.1.1)

where S 2 Rp⇥p is the sample covariance matrix. We denote the log-likelihood
function with L(·), and the regularization term with h(·). Positive-definiteness
of the estimated precision matrix b⇥ � 0 is established since it is an approximate
of the inverse of ⌃ � 0. Thus, precision matrices lie in the cone

S
p
++ =

�
⇥ 2 Rp⇥p | ⇥ = ⇥¸,⇥ � 0

. (3.1.2)

3.1.1 Motivation

First-order methods for the solution of (3.1.1) are based on the first-order opti-
mality conditions and the direction of the subgradient

@ (L(⇥) + h(⇥)) = S�⇥�1 +⇤�⌅, with ⌅ =

®
sign(⇥i j), if ⇥i j 6= 0,

[�1,+1], if ⇥i j = 0,
(3.1.3)

with ⌅ reducing to the sign of ⇥i j for entries ⇥i j 6= 0, and lying in the range
[�1,+1] for ⇥i j = 0. Such method have enjoyed increased popularity in high
dimensional problems due to their ease of implementation, and their low re-
quirements in memory and computation at each gradient step. However, they
exhibit at most linear convergence rates that render them inapplicable for prob-
lems whose dimensionality p exceeds the order of thousands [86, 87]. The usage
of second-order methods which consider the Hessian, or at least part of it, in or-
der to reach superlinear convergence rates is an attractive alternative, but one
that is faced with computational challenges due to the prohibitively large size of
the Hessian

H = ⇥�1 ⌦⇥�1 2 Rp2⇥p2
. (3.1.4)

The difficulties of applying a Newton-type algorithm for the solution of (3.1.1)
are further exacerbated by the positive-definiteness requirement imposed by the
set (3.1.2). In the original graphical lasso problem, the log-determinant func-
tion in the Gaussian MLE objective acts as a barrier function for the positive
definite cone [50], highly penalizing the objective when the estimate b⇥ becomes
semi-definite. This property simplifies the optimization problem, and has been

22 3.1 Quadratic approximation

exploited by gradient-based methods [88]. Approximating the objective func-
tion quadratically enables the usage of second-order information, but simultane-
ously results in losing the barrier property of the logarithm. As a consequence,
the Newton-type updates can potentially yield matrices that are not part of the
cone (3.1.2), and positive-definiteness must be explicitly enforced.

3.1.2 The quadratic model

Addressing the aforementioned challenges, a piecewise quadratic model has been
proposed [5, 6] that uses both first- and second-order information of the graphi-
cal lasso. For composite functionals with continuously differentiable (e.g., the
log-likelihood L(⇥)) and non-differentiable (e.g., the `1 regularization term
h(⇥)) components, like the one in (2.3.1), this computational approach is re-
ferred to as proximal Newton method. We refer to [89, 90] for a detailed analysis
of proximal methods for composite and convex functions. The QUadratic approx-
imation for Inverse Covariance estimation method (QUIC) method [5, 6] is part
of this family of algorithms and enjoys multiple computational advantages. First,
it converges with quadratic rates at the global optimum, thus drastically decreas-
ing the number of required iterations. Additionally, due to the `1 regularization
term, the second-order updates need to be computed only for a subset of the
total variables. If the size of this subset is much smaller than p2, significant com-
putational benefits are reported [6]. Finally, the direction of Newton’s method is
determined via a coordinate descent update strategy that considers the inherent
symmetry in the Hessian of the problem and speeds up the computation.

In QUIC, similarly to [90], the smooth component L(⇥) of the graphical
lasso objective is approximated with the second-order Taylor expansion around
an iterate ⇥ t , with t denoting the current iteration. Let L(⇥ t +�) be the Taylor
expansion for some perturbation � 2 Rp⇥p. Setting the inverse of the precision
⇥�1

t =W for ease of notation,1 and using the derivation of gradient and Hessian
of the log-likelihood (2.3.3), the approximation reads

L(⇥ t +�) = L(⇥ t) + vec(rg(⇥ t))¸vec(�) +
1
2

vec(�)¸r2 g(⇥ t)vec(�).

(3.1.5)

Discarding the termL(⇥ t), as it is constant with respect to�, and setting gt(�) =

1Note that W here refers to the inverse of the precision matrix, and not to the adjacency
matrix.

23 3.1 Quadratic approximation

L(⇥ t +�) we get

gt(�) = vec(rg(⇥ t))¸vec(�) +
1
2

vec(�)¸r2 g(⇥ t)vec(�)

= vec(S�W)¸vec(�) +
1
2

vec(�)¸ (W⌦W)vec(�)

= tr (S�W)�+
1
2

tr(W�W�), (3.1.6)

where vec is the vectorized equivalent of a matrix, such that for⇥ 2 Rp⇥p we have
vec(⇥) 2 Rp2

. Here, we have also used the fact that vec(�)¸(W ⌦W)vec(�) =
tr(W�W�) (see Chapter 10.2 in [39] for this property of the Kronecker product).
The Newton direction Dt for the composite objective f (⇥) can now be written
as

Dt = argmin
�

¶
gt(�) + h(⇥ t +�)

©

= argmin
�

¶
gt(�) + k⇤� (⇥ t +�)k

©
. (3.1.7)

In what follows, we simplify further the notation and drop the subscript t, to
denote with ⇥ the precision matrix, with D the Newton direction, and with g the
Taylor approximation of the log-likelihood at a given iteration.

3.1.3 Newton direction via coordinate descent

Finding the optimal Newton direction in (3.1.7) is closed-form problem that can
be solved by coordinate descent update, which is an efficient strategy for `1 regu-
larized problems [91]. Additionally, exploiting the structure of the second-order
term tr(W�W�) in (3.1.6) can significantly reduce the cost of the update.

We consider the update value ⌫ for one variable⇥i j, with i < j, that preserves
symmetry in the updated Newton direction D0 as D0i j = Di j +⌫(eie

¸
j +e je

¸
i), with

ei being the i-th entry of the all-ones vector. The coordinate descent procedure
for the one-variable problem corresponding to (3.1.7) is

D0i j Di j + argmin
⌫

g
Ä
Di j + ⌫(eie

¸
j + e je

¸
i)
ä

| {z }
Taylor approx.

+2⇤i j � |⇥i j +Di j + ⌫|| {z }
reg. term

. (3.1.8)

Expanding the terms in the quadratic approximation of the log-likelihood (3.1.6)
with Di j + ⌫(eie

¸
j + e je

¸
i) in the place of �, the trace tr(WDWD) is the only re-

maining quadratic term with respect to D. The minimum of (3.1.8) is achieved

24 3.1 Quadratic approximation

for
⌫= ��+ S(�� �/↵,⇤i j/↵), (3.1.9)

where the soft thresholding operator

S(
�� �
↵

,
⇤ij

↵
) = sign

Å
�� �
↵

ã
max

ß
|�� �
↵
�
⇤ij

↵
, 0|

™
(3.1.10)

moves ���
↵ towards zero by the amount ⇤ij

↵ , and sets it to zero if |���↵ | 
⇤ij

↵ .
We refer to Chapter 2 in [33] for an in-depth discussion of the role of the soft
thresholding function in coordinate descent solutions of `1 regularized quadratic
problems. In the graphical lasso case, the scalar values ↵,� ,�, derived in detail
in [5], are defined as

↵=W2
i j +WiiW j j

� = Si j �Wi j +W¸:iDW: j

�= ⇥i j +Di j. (3.1.11)

Note that with ↵ and � being easy to evaluate the main computational bottle-
neck lies in the evaluation of the term W¸:iDW¸: j in � , which requires O(p2) time
computed directly. An efficient alternative is to keep a p ⇥ p matrix F = DW in
buffer, and compute instead W¸:iF: j in O(p) flops.

3.1.4 Reducing the size of the search space

The cost of computing the Newton direction (3.1.7) can be further reduced by
limiting the set of variables for which an update, and thus also the precision
matrix, will be computed at each iteration. We denote the indices for which the
computation will take place as Ifree, and those that remain constant throughout
the optimization as Ifixed. The full index set is I := {1, 2, . . . , p}⇥ {1,2, . . . , p}. To
derive a reduction of the search space of the graphical lasso problem we consider
an optimal update �⇤ that results in @ f (⇥ +�⇤) = 0 (see Section 3.1.1 for the
subgradient of the composite functional f). The stationary conditions for the
smooth part of the composite objective read

rL(⇥+�⇤) =

8
><
>:

�⇤i j, if ⇥i j +�⇤i j > 0,

⇤i j, if ⇥i j +�⇤i j < 0,

[�⇤i j,⇤i j], if ⇥i j +�⇤i j = 0.

(3.1.12)

25 3.1 Quadratic approximation

It follows immediately that �⇤i j = 0 for ⇥i j = 0 and for rL(⇥)i j 2 [�⇤i j,⇤i j],
or equivalently for |rL(⇥)i j|  ⇤i j. This observation allows us to split the full
index set I into two complementary parts

I f i xed :=
¶
{i, j} 2 I : |rL(⇥)i j| ⇤i j and ⇥i j = 0

©
,

I f ree :=
¶
{i, j} 2 I : |rL(⇥)i j|> ⇤i j or ⇥i j 6= 0

©
,

:= I\I f i xed . (3.1.13)

Noting that the gradient of the negative log-likehood is elementwise rL(⇥)i j =
Si j �Wi j offers a deeper insight in this relationship and the way that the index
sets are computed. The key assumption here is that ⇥i j = 0 is already optimal for
an index pair (i, j) 2 I f i xed , thus no update Di j will be computed. The coordinate
descent updates to find the Newton direction are restricted to the I f ree subset.
For carefully selected values of ⇤i j, the number of variables in I f ree will be much
less than p2, i.e., the variables of the entire index set I. This results in signif-
icant computational advantages for larger values of ⇤i j, and sparser graphical
structures.

3.1.5 Step size computation

In each Newton step, computed only for the indices in Ifree, an appropriate step
size  2 (0,1) has to be selected that leads the quadratic approximate func-
tion (3.1.6) towards sufficient decrease, and also ensures that the next iterate
⇥0 = ⇥ + D will be positive definite. Similarly to [92], the updated precision
matrix is required to satisfy an Armijo line-search criterion [87], which for `1

regularized problems reads

f (⇥+ D) f (⇥) + �⇣ with ⇣ = tr(DrL(⇥)) + k⇤� (⇥ +D)k1 � k⇤�⇥k1,
(3.1.14)

with � 2 (0,0.5). Condition (3.1.14) ensures that the objective function de-
creases by a certain amount, with ⇣measuring the proximity of the current solu-
tion ⇥ to the global optimum [93]. Following the computation of the step size ,
the positive-definiteness of the updated precision matrix can be verified by the
Cholesky decomposition ⇥0 = LL¸, which only exists if ⇥+ D� 0.

26 3.2 The SQUIC algorithm

Algorithm 1 The key algorithmic operations present in QUIC.
1: Estimate the sample covariance matrix S ‹ acc.(2.2.3)
2: Evaluate the quadratic approximation of L(⇥) ‹ acc.(3.1.6)
3: Compute Newton’s direction D restricted to Ifree ‹ acc.(3.1.7), (3.1.13)
4: Update of the current estimate ⇥ via line search ‹ acc. (3.1.14)
5: repeat
6: steps 2 – 4
7: until convergence criteria are met

3.1.6 Key steps and computational challenges

The key steps of QUIC for the estimation of precision matrices are summarized in
Algorithm 1. It is important to note that the majority of the computational opera-
tions are dense, and therefore not applicable in high-dimensional settings. In par-
ticular, in step 1 the sample covariance matrix S is computed via a matrix-matrix
multiplication taking O(np2) time. Then in step 2 the quadratic approximation
of L is evaluated, and in step 3 the inversion of the precision matrix is performed
on every Newton iteration in order to compute the free index set (3.1.13) and the
coordinate descent update (3.1.8). Each inversion requires O(p3) time. Finally,
the O(p3) cost of Cholesky factorization dominates the computational cost in the
estimation of the step-size. At every second-order iteration multiple line-searches
are potentially performed, all of which will be checked for positive-definiteness.
The process is repeated by approximating the objective around the updated opti-
mizer until convergence, which is determined by examining the difference of the
current composite functional from its previous value. We present in the following
section the SQUIC algorithm, which addresses these computational challenges,
and enables the retrieval of large-scale sparse precision matrices.

3.2 The SQUIC algorithm

The Sparse QUadratic Inverse Covariance matrix estimation (SQUIC) is a fast
and scalable precision matrix estimation package that extends the original QUIC
algorithm [5, 6] to large-scale applications. The algorithm is a second-order
method that solves the `1 regularized maximum likelihood problem using highly
optimized linear algebra subroutines, which leverage the underlying sparsity and
the intrinsic parallelism in the computation. It is written in C++ and parallelized
with OpenMP. The SQUIC library is available on the USI GitLab at

https://www.gitlab.ci.inf.usi.ch/SQUIC/libSQUIC,

https://www.gitlab.ci.inf.usi.ch/SQUIC/libSQUIC

27 3.2 The SQUIC algorithm

Input data

{Y,⇤, ⌧}

Parallel
sparse

covariance

matrix

Placeholder-size

Block coordinate descent update

Newton iterations

Multithreaded supernodal Cholesky

Parallel block approx. inversion

Precision matrix

b⇥ 2 Rp⇥p

Figure 3.1: An illustration of the optimized algorithmic components present in
SQUIC.

and is the synthesis of the work presented in [7, 8, 9]. An illustration of the criti-
cal components of the MLE method based on quadratic approximations employed
in SQUIC is offered in Figure 3.1, and they key algorithmic steps are summarized
in Algorithm 2. Throughout the computation efficient data structures, i.e. com-
pressed sparse column storage (CRS), are utilized for all matrix computations,
thus replacing several dense matrix routines by state-of-the-art sparse operations.
The algorithm’s required inputs are the data Y 2 Rp⇥n, the regularization matrix
⇤ 2 Rp⇥p and the convergence tolerance ⌧ 2 R, and the output the estimated
sparse precision matrix b⇥ 2 Rp⇥p. Convergence in SQUIC is determined by mea-
suring that the relative difference between the objective function at the updated
⇥ and the previous ⇥prev is below a threshold ⌧, i.e.

k f (⇥prev)� f (⇥)k
k f (⇥prev)k < ⌧. The ini-

tial guess for the precision matrix and its approximate inverse is set in step 1 to
any sparse symmetric positive-definite matrix, which is most cases will be the
identity I. In step 2 a sparse representation of the sample covariance matrix S
is computed in parallel fashion. We provide some details on this computation in
Section 3.2.1. Entering the kernel of the algorithm in step 3, we compute the free
index set Ifree in step 4, and then in step 5 the composite quadratic functional is
evaluated for the current value of the precision matrix. In step 6 the computa-
tion of the Newton direction Di j is limited only to the indices that are part of Ifree,
and is achieved with a block coordinate descent update that we present in Sec-
tion 3.3.3. The line-search process in step 7 updates the current iterate ⇥ with a
step-size  2 [0,1) that ensures the positive-definiteness and satisfies the Armijo
criterion (3.1.14). We discuss the supernodal sparse Cholesky factorization with
which we accelerate this computation and safeguard that ⇥ � 0 in Section 3.3.1.
Last, in step 9 a parallel block approach, presented in Section 3.3.2, returns the
approximate inverse of the precision matrix ⇥inv, which will be used in the next
iteration.

28 3.2 The SQUIC algorithm

Algorithm 2 The key algorithmic operations present in SQUIC.
Input: Y,⇤,⌧

1: Initialize ⇥ ⇥inv I
2: Estimate the sparse sample covariance matrix S ‹ See sec. 3.2.1
3: while Not converged do
4: Compute the free index set Ifree ‹ See sec. 3.1.4
5: Evaluate the composite quadratic functional f (⇥)
6: Compute Newton’s direction D restricted to Ifree ‹ See sec. 3.3.3
7: Update ⇥ ⇥+ D
8: Ensure that ⇥ � 0 and suff. decrease of f (⇥) ‹ See sec. 3.3.1
9: Approximate the inverse of the precision ⇥inv ‹ See sec. 3.3.2

10: end while
Output: b⇥

3.2.1 Sparse sample covariance matrix

The sample covariance matrix S is dense, and its computation is challenging in
high dimensional settings. The elements of the S can be computed on the fly, with
this, nonetheless, not being a cache efficient approach. We instead compute an
initial sparse representation for S by accepting the values of indices that satisfy

⇤i j ∂ |Si j|∂
∆

SiiS j j or i = j. (3.2.1)

In the main loop of Algorithm 2, when performing Newton iterations, we com-
pute on the fly the entries (i, j) of S that are pending computation and have a
corresponding nonzero value in the approximated inverse ⇥inv. With this ap-
proach we ensure that the nonzero structure of S and ⇥inv overlap.

SQUIC exploits the highly parallelizable nature of the matrix-matrix multi-
plication that computes the sparse sample covariance matrix. The multicore ap-
proach that is followed is presented in detail in [7], and a scalable distributed-
memory version in [8].

3.2.2 Matrix regularization parameter

The matrix regularization parameter ⇤ 2 Rp⇥p is a dense matrix that cannot
be explicitly represented for large p. We therefore combine a sparse symmetric
matrix M 2 Rp⇥p with Mi j � 0, and a scalar regularization parameter � 2 R > 0,

29 3.3 Exploiting block structure

such that

⇤i j :=
⇢

Mi j for Mi j 6= 0,
� for Mi j = 0.

(3.2.2)

With this approach, the p2 entries of ⇤ can be represented with a total number
of entries equalling the nonzeros of M, and an additional entry for the scalar �.
It also enables the encoding of a graphical bias in the optimization problem for
the graphical lasso. The nonzero structure of M is utilized to penalize the ex-
pected nonzero pattern of b⇥, usually with some small scalar value. The entries
that are expected to be zero, for the conditionally independent variables, are
regularized with a scalar parameter �, that usually attains a larger value. Uni-
form regularization for all the variables, when no knowledge on the anticipated
graphical structure is available, is achieved by setting M = 0, which results in
⇤i j = �, 8 (i, j).

3.3 Exploiting block structure

Enforcing sparsity in the retrieval of inverse covariance matrices simplifies the
optimization process and provides interpretable results via sparse graphical rep-
resentations (see Section 2.2.1 for a relevant discussion). However, real-world
applications are commonly associated with community structure, or clustered
dependencies that exhibit limited sparsity. As examples we may consider biolog-
ical networks with genes exhibiting a hub structure [94], and grouped stocks in
financial portfolios [95]. When considering such structures, the selection of the
regularization parameters is pivotal, and is an active area of research [96, 97].
Large values in the regularization term correspond to increasing the threshold
that controls which links will be included, thus resulting in sparser networks. If
only the important connections remain, the community structure can offer in-
sights on the modular nature of the underlying data. However, removing too
many links leads to a significant loss of information [98]. An example of this
behaviour is illustrated in Figure 3.2. In a dataset with p = 100 variables and
5 underlying communities, denoted by A - E, a large regularization parameter
results in a sparse graph, but also to a loss of the community structure (see Fig-
ure 3.2a). In such clustered datasets, decreasing the threshold and including
more edges in the retrieved precision matrix is critical in order to accurately re-
trieve the structure (see Figure 3.2b). This results in a reduction of the sparsity
of the precision matrix, which is also accompanied by a drastic decrease in the
sparsity of the inverse and, thus, an overall increase in the computational cost.

30 3.3 Exploiting block structure

(a) (b)

Figure 3.2: Retrieving the graphical structure of datasets with clustered dependen-
cies. We visualize the sparsity pattern of the precision matrix, and the graphical
structure with the clusters in a circular layout. (a) For a large regularization pa-
rameter a sparser graph is estimated. However, the community structure is lost.
(b) A clear community structure is retrieved with a smaller regularization parame-
ter. The underlying precision matrix exhibits reduced sparsity and, thus, presents a
computational challenge.

In the SQUIC algorithm, the approximate matrix inversion of the precision
matrix and the coordinate descent updates are both routines severely affected
by any reduction in the sparsity of the estimated inverse ⇥inv. A popular op-
timization approach that mitigates such shortcomings is developing algorithms
that work with submatrices or blocks of the entire dataset, instead of rows or
columns of a sparse matrix [99]. With this motivation, we introduce in this sec-
tion algorithmic approaches that reduce the adverse effects of limited sparsity in
the precision matrix, and in the intermediary computations of the graphical lasso
problem. These methods are incorporated in the SQUIC library, and are based
on a supernodal strategy for sparse Cholesky decompositions (Section 3.3.1), an
approximate blockwise inversion of ⇥ (Section 3.3.2), and a block coordinate
descent update (Section 3.3.3).

3.3.1 Supernodal sparse Cholesky factorization

Performant Cholesky factorizations play a central role in the overall computa-
tional efficiency of SQUIC. For each line-search iteration (step 7 in Algorithm 2)
a Cholesky factorization is performed. The resulting factors are used to check
the updated ⇥ for positive-definiteness, and assist in the evaluation of the log-
determinant term of the objective function (step 5) and in the approximate in-
version of the precision matrix (step 8). For efficient computations SQUIC uses
the algorithm CHOLMOD [100] for the Cholesky factorization, which is part of

31 3.3 Exploiting block structure

the SuiteSparse Matrix Collection.2 CHOLMOD is based on the supernodal [101,
102] approach, which successively detects dense block structures during the fac-
torization and produces a matrix in a hybrid format. The idea of a supernode
is to group together consecutive columns with the same nonzero structure in
order to treat them as a dense block, with benefits in both storage and com-
putation. These dense blocks can be efficiently handled with high-performance
libraries such as the Intel(R) Math Kernel Library (MKL) [103]. We note that
the CHOLMOD supernodal sparse Cholesky factorization library provides inter-
nal parallelization, as it utilizes the optimized BLAS Level-3 routines. We will
provide a brief discussion on its parallel performance in the numerical results
presented in Chapter 4.

Our decomposition strategy is based on a combinatorial analysis that in-
creases sparsity in the Cholesky factors with an a priori permutation of ⇥. The
supernodes, are subsequently computed as part of the symbolic analysis and set
up for the factorization. Last, the sparse block Cholesky factorization is per-
formed with dense matrix operations implemented using level-3 BLAS and LA-
PACK [100]. We use the LDL¸ decomposition,

⇥ = PLDL¸P¸, (3.3.1)

with P being a permutation matrix computed by CHOLMOD, D a block diagonal
matrix with symmetric positive-definite submatrices as diagonal blocks, and L a
block lower triangular matrix with identities as its diagonal blocks.3 In the LDL¸

factorization, which is a variant of the more common LU Cholesky decomposi-
tion, a supernode is a range of (r : s) of columns of L with the same nonzero
pattern below the diagonal. We illustrate this data structure in Figure 3.3a. For
the block 1 this results in L11 = L(r1 : s1, r1 : s1) being a full lower triangular
matrix, and every row of L(s1 + 1 : p, r1 : s1) being either full or zero. The block
diagonal D11 can then be represented as L11L¸11. These blocks are stored with
compressed rows and contiguous columns. The main assumption here is that if
the underlying precision matrix is sparse then the fill-in of L will also be small.
This naturally depends on both the true structure of ⇥, and on the selection of
the regularization coefficients.

Using this decomposition (3.3.1), the log-determinant term of the objective

2The SuiteSparse collection of sparse matrix algorithms is available
at https://people.engr.tamu.edu/davis/suitesparse.html.

3Note that L here refers to the Cholesky factors, and not to the graph Laplacian matrix.

https://people.engr.tamu.edu/davis/suitesparse.html

32 3.3 Exploiting block structure

and the inverse W = ⇥�1 are expressed as

log det⇥ =
qX

b=1

log detDbb,

W = PL�¸D�1L�1P¸, (3.3.2)

where we assume that D consists of q total diagonal blocks. This routine also
factorizes Dbb = LbbL>bb as a dense Cholesky decomposition such that Lbb is a
lower triangular matrix. This in turn allows us to compute

logdetDbb = 2 log detLbb = 2
X

i

logLii (3.3.3)

from the diagonal entries of Lbb.
To compute the inverse W, the exact inversion of the block diagonal matrix

D is straightforward. In contrast, inverting L and computing the product of the
factors in (3.3.2) is challenging and may result in a dense final inverse. This
issue is addressed in the following section with a sparse approximate inversion
of L, to obtain the approximate inverse ⇥inv.

3.3.2 Block approximate matrix inversion

Approximating the inverse of the precision matrix entails two main computa-
tional obstacles. The first one is computing the approximate inverse of the Cholesky
factors Linv ⇡ L�1, and the second calculating the matrix multiplication in (3.3.2).
We alleviate the first bottleneck by considering the lower triangular matrix L =
I � E, with values Ei j in the off-diagonal entries and ones in the diagonal. The
matrix E represents the strictly lower triangular part of L. Now the exact inverse
of the factor can be computed with a Neumann series as

L�1 = (I� E)�1 =
p�1X

k=0

Ek. (3.3.4)

This summation requires at most k = p�1 terms, as E is strictly lower triangular
and thus Ep = 0. We approximate this Neumann series successively via Horner’s
scheme in order to compute

Linv
k+1 = Linv

k E+ I, k = 1,2 . . . , p� 1, (3.3.5)

33 3.3 Exploiting block structure

r1

r1

s1

s1

r2

r2

s2

s2

L11

L22

L:2

(a)

Linv

i1 · · · ir

R

i1
...
ir

E:b

Q

(b)

Figure 3.3: Exploiting block structure in the retrieval of precision matrices. (a)
An illustration of a supernode set up for the Cholesky factorization ⇥ = LDL¸.
Red elements correspond to dense regions of the matrix, and white to zero entries.
(b) The data structures in the block sparse matrix-matrix multiplication used for
the approximate matrix inversion. The buffer Q captures the nonzero rows and
the contiguous columns of block E:b. The elements of Linv that contribute to the
multiplication are stored in R.

where Linv
1 := I+ E. This iterative process converges when the condition

|(Linv
k+1)i j � (Linv

k)i j|∂ ⌧inv (3.3.6)

is fulfilled, with ⌧inv > 0 being a dropout threshold. To prevent excessive error
propagation in the values of the updates Linv

k+1 Linv
k E+ I we use a scaling factor

� 2 (0, 1) such that only the elements that satisfy

|(Linv
k+1)i j � (Linv

k)i j|> �⌧inv (3.3.7)

are updated. In practice, we set � = 0.1 in SQUIC. The final approximation
Linv is sparsified by discarding entries smaller than the tolerance level ⌧inv, and
subsequently ⇥inv is computed as per (3.3.2). The resulting entries must finally
satisfy

|⇥inv
i j |2 > ⌧2

inv⇥
inv
ii ⇥

inv
j j . (3.3.8)

34 3.3 Exploiting block structure

Algorithm 3 Parallel block approximate matrix inversion.

Input: L,Dinv := D�1,P,⌧inv
1: Initialize E I� L,Linv I+ E,u 0
2: while max(u)∂ ⌧inv do
3: for blocks b = 1, . . . , q parallel do
4: r thread_id,Q E:b,V 0
5: for c = 1,2, . . . , q do
6: Compute Rc given Linv

:c
7: V V+RcQ
8: end for
9: ur max(ur , maxi kLinv

i b �Vi:k1)
10: for all i > b and kLinv

i b �Vi:k1 > �⌧inv do
11: L̄inv

i b Vi:
12: end for
13: end for
14: Linv L̄inv

15: end while
16: Linv sparsify(Linv)
17: Compute the block graph (Linv)¸

18: for b = 1, . . . , q parallel do
19: ⇥inv

:b (Linv)>DinvLinv
:b

20: end for
21: ⇥inv sparsify(P⇥invP¸)
Output: ⇥inv

The computational efficiency and accuracy of this approach relies on (i) a small
number of iterations k in Horner’s scheme (3.3.5), and (ii) the fact that both the
inverse of the Cholesky factors L�1 and of the precision matrix ⇥�1 are sparse, or
can be accurately approximated as such. Even though both assumptions depend
on the dataset in question, in our numerical experiments presented in Chapter 4
we observe that our approximate inversion routine is accurate and performant
for a variety of synthetic and real-world instances.

Computing the product of the factors in (3.3.2) is the second significant com-
putational challenge in the estimation of ⇥inv. The kernel operation in this prod-
uct is a sequence of sparse block matrix-matrix multiplications, with the individ-
ual products relying on dense matrix operations. We parallelize this portion of
the algorithm and exploit the block structure induced by the supernodes of the
Cholesky factorization described previously in order to accelerate the computa-
tion. Since the exact inversion of the block diagonal matrix D in (3.3.1) does

35 3.3 Exploiting block structure

not pose computational or storage problems, the parallelized block approximate
matrix inversion Algorithm 3 comprises of two parts. First, the computation of
Linv as per (3.3.5), and second the reconstruction of ⇥inv (3.3.1).

The algorithmic inputs are L, Dinv := D�1, the permutation matrix P provided
by CHOLMOD, and the threshold ⌧inv that is used to drop entries of negligible
magnitude. We initialize in step 1 the variables and a buffer u of size equal to the
maximum numbers of threads. We evaluate with this buffer the convergence of
the approximate Neumann iteration in step 2, and store the maximum magnitude
of the incremental updates in step 9. As illustrated in Figure 3.3a, each lower
diagonal block of L, E, and Linv is stored as a dense matrix with compressed rows
and contiguous columns. The parallel portion of the algorithm begins in step 3,
where we consider q total diagonal blocks in L, and allocate each thread r to a
specific block b. Additionally, we initialize here a dense buffer V of size t⇥ s that
will store the multiplication updates. The sparse matrix-matrix multiplication is
performed in steps 5�8, and illustrated in Figure 3.3b. Each block E:b consists of
a dense buffer Q with rows i1, . . . , ir and columns j, j+1, . . . , j+s�1, that captures
the nonzero rows and the contiguous columns within block b. We compute the
partial matrix multiplication and update the buffer as V V + RcQ for each
block column c of Linv that intersects with {i1, . . . , ir}. In order to do so, we
initially gather the associated columns of c into a buffer R and then we compute
V RQ. In steps 10� 12 the dropout rule 3.3.8 is applied, and the remaining
rows of {i1, . . . , it} and columns j, . . . , j + s � 1 from V are scattered to the new
approximate inverse factor L̄inv

:b .
Before approximating the inverse of the precision matrix, we discard entries

smaller than ⌧inv from Linv in step 16 and then compute the block graph of (Linv)¸

in step 17, based on the partitioning induced by the diagonal blocks. Subse-
quently, we store the start of the dense supernodal diagonal blocks, if any ex-
ist. This is followed by the computation of the sparse approximate ⇥inv in steps
18� 20. Notice that (Linv)¸ is a unit upper triangular matrix with dense super-
diagonal blocks that stores only the nonzero columns. When performing the
matrix multiplications in step 18 the nonzero rows i1, . . . , ir of Linv

:b are associated
with the diagonal blocks c1, . . . , cr of Dinv and block columns c1, . . . , cr of (Linv)¸,
which now can be easily accessed via the computed block graph. Similarly to our
approach at step 7, we exploit the symmetry in the computation, and compute
only the lower block triangular part of ⇥inv. Our last operation, before returning
the estimated ⇥inv, is to apply the permutation matrix P, and to discard entries
smaller than the selected threshold ⌧inv.

For the parallel portion of Algorithm 3, the computation associated with each
block cannot be determined before evaluating R for each block column c of Linv,

36 3.4 Sparse M -matrix estimation

and each thread r operates on a different block of data. We thus consider a static
OpenMP scheduling.

3.3.3 Block coordinate descent update

The minimization of the negative log-likelihood objective (3.1.1) requires the
computation of the Newton direction Di j in step 6 of Algorithm 2 for the set of free
indices {i, j} 2 Ifree. A block coordinate descent update can be computationally
infeasible if the set Ifree is large, and particularly if ⇥inv is not a sparse matrix. We
accelerate this segment of the algorithm with a blocking approach that reorders
the indices of the matrix in order to increase contiguous data patterns and to
reduce cache missses.

Similar to Section 3.1.3, to determine the Newton direction we compute

Ai j =W2
i j +WiiW j j,

Bi j = Si j �Wi j +Wi:Di jW: j, and (3.3.9)

� i j = ⇥i j +Di j,

limited to all indices {i, j} 2 Ifree. Instead of accessing the indices in the free set in
a randomized manner, we consider a regrouped approach such that {i1, j}, . . . , {il , j}
refer to the same column j, and sort the indices in ascending order i1 < i2 <
· · · < il . This approach allows us to access the columns W: j, S: j, and ⇥: j once
in an ascending row of indices, and compares favorably from a computational
perspective to a randomized access approach that requires recomputing these
quantities. Additionally, this access pattern enables the efficient computation of
the matrices A, B, and � in (3.3.9), and the update of B and � whenever the new
Newton direction D is found.

3.4 Sparse M -matrix estimation

As outlined in the previous Chapter 2, M -matrices are part of the set

SM =
�
⇥ 2 Rp⇥p|⇥i j = ⇥ ji ∂ 0 8i 6= j, ⇥ � 0

, (3.4.1)

and can be considered as precision matrices whose partial correlations

�⇥i j/
∆
⇥ii⇥ j j, i 6= j, (3.4.2)

37 3.4 Sparse M -matrix estimation

are all non-negative [10]. The GMRF corresponding to a precision matrix of that
form is referred to as attractive [104], and the constrained GLASSO estimator
for M -matrices is defined as

b⇥ = arg min
⇥2SM

f (⇥) + k⇤�⇥k1. (3.4.3)

In this section we present two algorithms developed for the MLE of M -matrices
emerging from high dimensional datasets. Our contributions build on top of the
SQUIC library for large scale precision matrix estimation. In Section 3.4.1 we
present the SQUIC-fit algorithm, an unconstrained approach to M -matrix esti-
mation based on two consecutive `1 regularized optimization problems. Then,
in Section 3.4.2 we introduce SQUIC-sqp, a constrained sequential quadratic pro-
gramming approach for the solution of problems of the form (3.4.3).

3.4.1 A post processing approach

The first learning algorithm of M -matrices in the set (3.4.1) that we present
hereby can be considered as an unconstrained `1 regularized technique. In SQUIC-
fit we do not enforce additional sign constraints in the estimation of the precision
matrix, but instead follow a post processing approach coupled with the utiliza-
tion of a matrix sparsity parameter in order to obtain the graphical structure of
non-negatively correlated variables. Our approach consists of two consecutive
estimations of precision matrices b⇥(1), b⇥(2) that are solutions of a graphical lasso
problem. The first precision matrix b⇥(1) is estimated with the aid of a scalar regu-
larization parameter � that penalizes equally all the variables. The entries of the
resulting precision matrix are utilized in order to estimate the binary graphical
structure of the non-negatively correlated variables in the data Y 2 Rp⇥n under
question. The second precision matrix b⇥(2) is estimated with a matrix sparsity
parameter ⇤ that encodes this graphical structure.The final M -matrix is then ex-
tracted by post-processing the entries of b⇥(2).

An outline of the algorithmic scheme for SQUIC-fit is presented in Algo-
rithm 4. In step 1 we solve the `1-regularized negative log-likelihood problem,
that is,

b⇥(1) = arg min
⇥�0

¶
� logdet⇥+ trS⇥+�k⇥k1

©
. (3.4.4)

The scalar tuning parameter � is set such that the resulting graph is sparse, and
its values usually adjust the regularization according to the number of variables

38 3.4 Sparse M -matrix estimation

Algorithm 4 SQUIC-fit
Input: data Y, tuning parameters �,⌘, thresholds ,⌧

1: estimate : b⇥(1) ‹ acc. (3.4.4)
2: Build graphical bias G ‹ acc. (3.4.5)
3: Build matrix regularization parameter ⇤ ‹ acc. (3.4.7)
4: estimate : b⇥(2) ‹ acc. (3.4.6)
5: Build M -matrix b⇥ ‹ acc. (3.4.8)

Output: b⇥

p and the number of features n. Then, in step 2 we estimate the structure of the
negative off-diagonal entries of b⇥(1) as

Gi j =

®
0, if i = j,

I
Ä
�b⇥(1)i j > 

ä
, if i 6= j.

(3.4.5)

The thresholding parameter æ 0 is chosen sufficiently small so that all negative
off-diagonal elements b⇥(1)i j of significant magnitude are detected. These values
correspond to an attractive GMRF, and capture, for nonzero entries, the notion
of positive correlation between two nodes (variables) i, j of the graph.

In steps 3� 4 we subsequently utilize the graphical structure of G 2 Rp⇥p in
the composition of the matrix tuning parameter ⇤ for solving

b⇥(2) = arg min
⇥�0

¶
� logdet⇥+ trS⇥+ k⇤�⇥k1

©
. (3.4.6)

The matrix sparsity parameter is composed as

⇤i j =
⇢
⌘ for Gi j 6= 0,
� for Gi j = 0.

(3.4.7)

where ⌘ < � 2 R, thus the regularization matrix ⇤ effectively uses the sparsity
pattern of G as a graphical bias in the estimation of the structure of b⇥(2). The
final step 5 of SQUIC-fit involves a post-processing procedure to construct the
M -matrix from the entries of b⇥(2). The final matrix b⇥ is formed by selecting the
structure and the weights of the non-positive off-diagonal entries of the estimated

39 3.4 Sparse M -matrix estimation

(a) ⇥⇤
(a)

(b) b⇥(1) (c) G⇤
(a)

(d) b⇥(2) (e) b⇥(1)

Figure 3.4: An illustrated example of the key algorithmic operations of SQUIC-fit.
Red edges correspond to negative off-diagonal entries ⇥i j < 0, and blue edges to
positive ⇥i j > 0, i 6= j. (a) The true underlying structure of the M-matrix. (b)
The first estimated precision matrix with the scalar regularization parameter �. (c)
The graphical bias of the negative off-diagonals. (d) The second estimated precision
matrix with the matrix regularization term ⇤. (e) The final estimated M-matrix
after the post-processing step.

precision matrix b⇥(2) as

b⇥i j =

®
0, if i = j,

I
Ä
�b⇥(2)i j > 

ä
b⇥(2)i j , if i 6= j.

(3.4.8)

In both steps 1 and 4 the SQUIC algorithm is executed up to a convergence tol-
erance ⌧. These key operations of SQUIC-fit are illustrated in Figure 3.4, where
we attempt to retrieve a grid structure with p = 16 nodes from n= 100 samples
drawn from the zero-mean multivariate Gaussian distribution Y ⇠ N(0,⇥�1

⇤),
with ⇥⇤ being the true underlying M -matrix of the grid.

Incorporating available connectivity information for the graphical structure
of non-negatively correlated variables in the data Y is also possible in the Algo-
rithm 4. In this case the structure of G is part of the input, and the algorithm is
reduced to steps 3� 5.

3.4.2 A constrained optimization approach

The second learning algorithm that we introduce, SQUIC-sqp, is a constrained
approach for the estimation of M -matrices based on sequential quadratic pro-
gramming. The minimization of the `1 regularized log-likelihood, restricted to
the set SM in (3.4.1), can be reformulated as the constrained minimization prob-

40 3.4 Sparse M -matrix estimation

lem

minimize
⇥�0

{ f (⇥) + k⇤�⇥k1} , (3.4.9a)

subject to ⇥i j ∂ 0 for all i 6= j. (3.4.9b)

In order to approximate this optimization problem locally with a sequence of
quadratic reformulations, we employ again the second-order Taylor expansion
of f around ⇥, similarly to our approach for precision matrices (3.1.6). The free
index set I f ree, as defined in (3.1.13), restricts the optimization problem (3.4.9)
to pairs of indices that satisfy |Si j�⇥�1

i j |> ⇤i j, or pairs for which⇥i j is potentially
nonzero. Therefore, in the context of M -matrix estimation, the matrix can be
assumed to have either positive sign for the indices i = j in the diagonal, or
negative sign for the i 6= j off-diagonal elements. This observation allows us to
rewrite the local regularized quadratic objective as

q(�) = tr (S�W)�+
1
2

trW�W�

+
X

i

⇤ii(⇥ii +�ii)�
X

i 6= j

⇤i j(⇥i j +�i j). (3.4.10)

where W = ⇥�1 is again the inverse of the M -matrix. This local approximate
function is quadratic and differentiable, and, similarly to SQUIC-fit, prior knowl-
edge on the latent graphical structure can be incorporated in the objective func-
tion through a matrix sparsity parameter of the form (3.4.7). In order to account
for the constraints of the minimization (3.4.9b), we reformulate the problem as

b⇥ = arg min
�

q(�) (3.4.11a)

subject to ⇥i j +�i j ∂ 0 for all i 6= j, (3.4.11b)

The differentiable objective, in conjuction with the linear inequality constraints,
enables the usage of sequential quadratic programming (SQP) [64, 105] for the
solution of this problem.

At the core of the SQP method lies a successive distinction between con-
straints that are considered active and inactive in the optimization. The active
ones refer to �i j such that �i j ⇡ �⇥i j, and the inactive ones such that �i j ⌧
�⇥i j. Since (3.4.11b) corresponds to box constraints, the Karush–Kuhn–Tucker
(KKT) system for the unconstrained variables can be solved using a straight pro-
jection, i.e., systems (3.4.11) and (3.4.12) are restricted to the diagonal entries
�ii, which are always unconstrained, and the inactive off-diagonal entries �i j.

41 3.4 Sparse M -matrix estimation

For the active constraints, the entries�i j enter as inhomogeneity. We denote the
affiliated index subsets of Ifree by Iu for the unconstrained indices and by Ic for
the active ones. The minimization problem is therefore reduced to solving the
projected systemrq(�) = 0 restricted to Iu, where the gradient of the quadratic
function q(�) in (3.4.10) reads

rq(�) =W�W+ S�W+⇤� (2I� ee¸). (3.4.12)

Note that the matrix associated with the term W�W in (3.4.12) is equivalent to
the Kronecker product W⌦W, and the size of the resulting matrix is squared with
respect to W. Additionally, the positive-definiteness of W leads to W ⌦W � 0.
We are therefore solving systems with the submatrix of W⌦W belonging to the
unconstrained indices {i, j} 2 Iu.

In the solution of the linear system rq(�) = 0 the sought matrix � 2 Rp⇥p

is treated as a vector in a subspace of Rp2
defined on Iu. The prohibitively large

size of this system, that is quadratic with respect to the dimensions p, even when
projected to the set of unconstrained variables renders an iterative approach
the only viable option. We use the preconditioned conjugate gradient (PCG)
method [64] with diagonal preconditioning, implemented in a parallel fashion
with static OpenMP scheduling. It should be noted that the vectors used in the
PCG method are sparse symmetric matrices stored in compressed column stor-
age format (CSC), and as a result, the data is naturally partitioned. The paral-
lelization is performed along the set of columns of the underlying matrices. For
details regarding the benefits of parallelizing the conjugate gradient method we
refer to [106], and for an implementation of the matrix-by-vector product for
matrices stored in CSC format to [107].

An outline of the SQP part of our implementation is offered in Algorithm 5.
The SQP method successively evaluates the computed�i j, checks the constraints,
activates and de-activates them until eventually the solution is computed. The set
of unconstrained indices Iu is computed in step 3, and in step 4 the constrained
ones are determined as Ifree \ Iu, and the matrix � is initialized. The parallel
diagonally preconditioned CG for the solution of rq(�) is called in step 5 with
the indices that are part of Iu as unknowns, and the ones in Ic as constants. The
existence of further descent directions is examined in steps 6 � 13. Due to the
simplicity of the box constraints in (3.4.11b), the Lagrangian multiplier Ti j of the
augmented system

q(�) +
X

i 6= j

Ti j(⇥i j +�i j) (3.4.13)

is obtained by the negative gradient T = �rq(�) for all indices {i, j} 2 Ic. If the

42 3.4 Sparse M -matrix estimation

Algorithm 5 SQP-loop of SQUIC-sqp
Input: objective function q(�) from (3.4.10)

1: ⇥old ⇥
2: while not satisfied do
3: Compute set Iu ⇢ Ifree of inactive constraints and diagonal indices
4: Ic Ifree \ Iu, � 0
5: Call PCG with diagonal preconditioning for solving rq(�) = 0 from

(3.4.12), restricted to variables associated with Iu as unknowns and Ic
as constants.

6: if � ⇡ 0 and there is no further descent direction then
7: break
8: else if � ⇡ 0 but there exists a further descent direction then
9: de-activate a promising constraint and update Iu, Ic

10: else
11: Compute ⌫ 2 (0, 1] such that ⇥i j + ⌫�i j ∂ 0 for all {i, j} 2 Iu, i 6= j
12: ⇥ ⇥+ ⌫�
13: end if
14: end while
15: � ⇥�⇥old
Output: �

update � ⇡ 0 we consider the signs of the Lagrange multipliers Ti j on the active
set Ic. If they are non-negative Ti j � 0, the optimal � has been found, while
if there exist negative components Ti j < 0, then there must be further descent
directions. The index pair {i, j} associated with the most negative entry of T is
the first promising candidate to be de-activated. If the update � 6= 0 is nonzero,
we perform a line-search to determine the largest step-length value ⌫ in the range
(0, 1] for which all the constraints are satisfied, and update the M -matrix with
⇥ ⇥+ ⌫�. Finally, in step 15 we compute the new update � ⇥�⇥old.

Chapter 4

Numerical results for graph learning

In this chapter we demonstrate the effectiveness of the previously introduced
algorithms in the retrieval of graphical structures with a series of numerical ex-
periments. We begin in Section 4.1 with results concerning the estimation of
sparse precision matrices, and then in Section 4.2 we shift our attention to sparse
M -matrices. To evaluate and analyze the efficacy of our methods we present re-
sults on both synthetic and real-world datasets. Synthetic cases are associated
with ground-truth solutions and are useful for evaluating the accuracy of the
retrieved graphs. Simultaneously, artificial data generation provides a suitable
environment to investigate the strong scaling capabilities of our algorithms for
an increasing number of dimensions p. Our real-world experiments, instead, are
usually not equipped with labelled or annotated solutions, but represent chal-
lenging realistic large-scale problems whose solution depends on the accurate
estimation of latent graphical structures.

All experiments presented in this chapter are conducted on a single node
with 1 TB main memory and 4 Intel(R) Xeon E7-4880 v2 @ 2.5 GHz each with
15 cores per socket, totaling 60 cores, and the numerical values presented hereby
are averaged over 10 runs.

4.1 Estimating precision matrices

This section outlines the analysis and test results that validate the performance,
accuracy, and scalability of the SQUIC algorithm. We begin in Section 4.1.1 with
tests on synthetic data to compare the accuracy and time-to-solution of SQUIC
against various external state-of-the-art methods. Then, in Section 4.1.2 we mea-
sure the strong scaling capabilities of its individual algorithmic components. Last,
in Section 4.1.3 we perform a real-world experiment, where we classify high di-

43

44 4.1 Estimating precision matrices

mensional DNA microarray data with limited samples with a linear discriminant
analysis (LDA) study.

Experimental setup

The following publicly available sparse precision matrix estimation packages are
included in our comparative results:1

1. GLASSO [4]: A first order method based on coordinate descent updates for
the solution of the graphical lasso problem.

2. BigQUIC [66]: A second order method based on quadratic approximation,
that superseded QUIC [6], and solves issues associated with the memory
footprint of the method.

3. EQUAL [71]: An approximation approach of the `1 regularized negative
log-likelihood with a trace-based quadratic loss function.

4. FASTCLIME [73, 75]: A constrained `1 regularized method using the para-
metric simplex algorithm for the estimation of sparse inverse covariance
matrices.

5. MDMC [76]: Approximation of the graphical lasso estimator through soft-
thresholding of the sample covariance matrix and solving a second-order
maximum determinant matrix completion problem.

We base our comparative results on two synthetic datasets generated from Gaus-
sian distributions with a mean of zero and the following types of predefined true
precision matrices:

• Tridiagonal, ⇥⇤(1) — A tridiagonal matrix with off-diagonal values of �0.5
and 1.25 on the diagonal, and

• Clusters, ⇥⇤(2) — A random structured matrix representing a graphical struc-
ture of p/100 clusters of size 100 and an average degree of 20 with 90%
of the edges contained within the clusters [108].

1BigQUIC, GLASSO, EQUAL and FASTCLIME are available as R packages at: https://cran.r-
project.org/web/packages/BigQuic, https://cran.r-project.org/web/packages/glasso/,
https://github.com/cescwang85/EQUAL, and https://github.com/cescwang85/EQUAL, respec-
tively. The MATLAB code for MDMC is available at: https://ryz.ece.illinois.edu/software.html.

https://cran.r-project.org/web/packages/BigQuic
https://cran.r-project.org/web/packages/BigQuic
https://cran.r-project.org/web/packages/glasso
https://github.com/cescwang85/EQUAL
https://github.com/cescwang85/EQUAL
https://ryz.ece.illinois.edu/software.html

45 4.1 Estimating precision matrices

(a)

-14

-12

-10

-8

-6

-4

-2

(b)

Figure 4.1: The sparsity structure of the precision matrices of two synthetic datasets
with dimension p = 103 are shown in (a) with the left panel being the tridiagonal
matrix ⇥⇤(1) and the left one a clustered matrix ⇥⇤(2). The respective inverse of the
precision matrices is shown in (b), where the colors represent the magnitude of the
matrix values in log base 10. Note that both inverse matrices are dense; however, the
tridiagonal matrix’s inverse has exponentially decaying values in the off-diagonals.

In what follows, we refer to the respective datasets with the terms described
above. In all the tests outlined below, the number of samples is fixed at n= 500
and the convergence tolerance is ⌧ = 10�4. In order to construct the input data
Y 2 Rp⇥n, we consider a matrix Z ⇠ N(0, I) 2 Rp⇥n of normally distributed and
uncorrelated random variables. The synthetic datasets is then created as Y = ZL,
where L is the lower-triangular Cholesky factor of the inverse of the true precision
⇥⇤.

These datasets are selected to highlight two key points. First, the accuracy of
the introduced SQUIC algorithm is equivalent or better compared to the afore-
mentioned packages. Second, SQUIC provides significant speedups in compari-
son to the other methods both in scenarios when the inverse⇥�1 exhibits reduced
sparsity, and when both ⇥ and ⇥�1 can be approximated as being very sparse.
We also note that the exact inverse of ⇥⇤(1) is dense but has exponentially de-
caying values as we move further from the diagonal. This property makes the
tridiagonal dataset well suited for a sparse approximation of the inverse preci-
sion matrix via a thresholded Neumann approach (see Section 3.3.2 for further
details). For ⇥⇤(2) we also have a dense exact inverse; however, the magnitude
difference between large and small values is much smaller than in the tridiagonal
example, and thus a dropout tolerance ⌧inv does not prevent increased density in
⇥�1. This behavior is illustrated in Figure 4.1. For this reason we can expect that
the clusters dataset will pose a more significant computational challenge in both
the approximate matrix inversion and, in turn, the coordinate descent update.

The accuracy in the estimation of b⇥ is measured in terms of F� score 2 [0,1],

46 4.1 Estimating precision matrices

SQUIC BigQUIC EQUAL GLASSO FASTCLIME MDMC

102 103 104

10�1

101

103

Dimension (p)

Ti
m

e
(s

ec
.)

(a)

102 103 104

10�1

101

103

105

Dimension (p)

Ti
m

e
(s

ec
.)

(b)

Figure 4.2: A comparison of the runtimes of precision matrix estimation packages
for (a) the tridiagonal and (b) the clusters dataset. At each dimension p, the runtime
is the total compute time for a path of 10 sparsity parameters �.

with a value of F = 1 suggesting that the matrix has been fully recovered, while
smaller values of F suggest worse recovery success. We additionally consider the
unsupervised clustering accuracy metric ACC 2 [0, 1] to measure the correctness
of the classification solutions in Section 4.1.3. Again, a value of ACC= 1 suggests
a perfect grouping of the nodes of the graph according to the true labels. Note
that results regarding the relative error in the estimated b⇥ have been previously
presented in [7]. For further details on these accuracy metrics we refer to [109].

4.1.1 Comparisons with other methods

We present here results that validate the performance and accuracy of SQUIC,
with a comparative analysis on a set of datasets of medium size. The results
outlined in Figure 4.2 correspond to the two synthetic datasets with dimensions
102 ∂ p ∂ 104. We penalize equally all entries of the precision matrix with a
scalar paramemer �. Each runtime represents a path of 10 different � values,
which have been determined experimentally as the range for the best recovery of
the true precision matrix. The timing results for EQUAL, FASTCLIME, GLASSO,
and MDMC are excluded for p > 6400, as the runtimes exceed 2·105 seconds.
We observe that SQUIC outperforms the competing algorithms when p æ 500
for both datasets. For the tridiagonal dataset tests, presented in Figure 4.2a,

47 4.1 Estimating precision matrices

SQUIC & BigQUIC & GLASSO EQUAL FASTCLIME MDMC

0.2 0.3 0.4 0.5 0.6

0.6

0.8

1

Sparsity parameter (�)

F-
sc

or
e

(a)

0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

Sparsity parameter (�)

F-
sc

or
e

(b)

Figure 4.3: A comparison of the F-score achieved by the different methods in the
recovery of the precision matrices with respect to the regularization parameter �,
for (a) ⇥⇤(1) the tridiagonal and (b) ⇥⇤(2) the clusters datasets.

SQUIC is consistently 5 times faster than the second fastest method (MDMC), and
orders of magnitude faster than the other methods. While the tridiagonal dataset
is a didactic example with approximately 3 nonzeros per row in the inverse of
the precision matrix ⇥�1, the cluster dataset aims to resemble the structure of
real-world data, with both ⇥ and ⇥�1 being significantly denser. As shown in
Figure 4.2b, the SQUIC algorithm is consistently orders of magnitude faster than
the other methods for p � 103.

In Figure 4.3 we show the F-scores for the various algorithms for p = 103

dimensions with respect to a varying regularization parameter �. Notice that
SQUIC, BigQUIC, and GLASSO solve the same `1 regularized MLE problem (3.1.1)
and, thus, the recovered precision matrices have the same or similar F-score. Any
differences between these MLE methods are due to numerical errors or the ap-
proximate inversion of the precision. Both are shown in our experiments to have
a negligible impact on the estimated graphical structure. For the tridiagonal
dataset in Figure 4.3a, we can see that all methods reach the maximum F-score
of 1 for similar � values. For the clusters dataset in Figure 4.3b, the MLE meth-
ods reach a maximum F-score of 0.48 while EQUAL is slightly higher at 0.49. In
contrast to the tridiagonal dataset, the remaining algorithms do not reach the
same F-score, but remain in lower levels.

48 4.1 Estimating precision matrices

Total Approx. inv. Super. Chol. Sample cov. Ideal

10�1

100

1 5 15 30 60
Number of cores

N
or

m
al

iz
ed

ru
nt

im
e

(a)

10�1

100

1 5 15 30 60
Number of cores

N
or

m
al

iz
ed

ru
nt

im
e

(b)

Figure 4.4: Strong scaling for SQUIC at dimension p = 105 for (a) the tridiagonal
and (b) the clusters datasets. The sparsity parameters used are � = 0.5 and � =
0.15, respectively. For all tests we consider ⌧= ⌧inv = 10�4.

4.1.2 Scalability

In Figure 4.4 we present the strong scaling results of SQUIC and its internal
parallel components discussed in Sections 3.2, 3.3, i.e., the introduced parallel
block approximate matrix inversion, the supernodal sparse matrix factorization
from the package CHOLMOD, and the sparse sample covariance matrix. In both
plots, the dashed black line indicates the ideal scalability. For the tridiagonal
dataset, shown in Figure 4.4a, the dominant algorithmic component is the ap-
proximate matrix inversion, which has a similar scalability profile to the total
runtime. In contrast, the Cholesky factorization component accounts for very
little of the runtime, and scale equivalently. In total, the parallel implementation
of the algorithm exhibits 13 times speedup over its sequential variant.

Similarly to the tridiagonal case, the block approximate matrix inversion for
the clusters dataset in Figure 4.4b requires over 79% of the serial runtime. As
such, the overall scalability matches the approximate matrix inversion, which
scales well to 60 cores with minimal degradation. Overall, the parallel execution
of SQUIC is 7 times faster than its single-core execution for the clusters dataset.

4.1.3 Classification of microarray data

As a final case study, we utilize SQUIC to perform the classification of high dimen-
sional microarray data concerning gene expressions with a linear discriminant

49 4.1 Estimating precision matrices

analysis (LDA) approach. This study is intended to demonstrate (i) the perfor-
mance of SQUIC in estimating precision matrices emerging from large real-world
datasets and (ii) the increase in classification accuracy by utilizing a graphical
bias in the matrix tuning parameter ⇤. The datasets used are a subset of the
collection available in the R package datamicroarray [110], and are presented
in Table 4.1. The challenging ratio between the available samples n and the di-
mensionality p renders such data unfavorable for LDA approaches. As a result,
various approximate methods have been proposed that reduce the dimensional-
ity of the problem [111, 112]. We demonstrate here that SQUIC enables applying
traditional LDA with high classification scores within a reasonable time.

We estimate two precision matrices for these cases, one based on a scalar reg-
ularization parameter �, and one utilizing a graphical bias in the composition of
the matrix parameter ⇤. Subsequently, we apply the LDA method to group them
into classes. Based on the classification scores in grouping the DNA microarray
genes, we determine the accuracy in the computation of the inverse covariance.
For a detailed analysis of the method, we refer to [113]. We follow the approach
of [40, 114] and randomly select 70% of the genes from each class to form the
training set, with the rest of the genes being in the testing set.

Initially, we normalize the input such that the sample covariance matrix S
satisfies Si j 2 [�1, 1] with Sii = 1. To assign the matrix tuning parameter ⇤,
we consider the minimal spanning tree (MST) [115] of the dataset. As a first
step we generate a complete graph where the weights of the edges are defined
as the Euclidean distance similarity measure (see, e.g., [116] for a similar ap-
proach). We note that using the Pearsons distance similarity provides similar
accuracy results for the datasets under consideration, and refer to [117] for a
relevant discussion. Next, we compute the adjacency matrix W of the MST for
the complete graph, and use W to estimate the off-diagonal nonzero pattern of b⇥.
The MST provides a very sparse estimate for the off-diagonal elements of b⇥, as
W will have 2 nonzeros per row, or equivalently 2 edges per node. The nonzero
pattern of W corresponds to low values of the used similarity measure, that is,
the Euclidean distance (see e.g., [118] for a detailed discussion). In practice,
we used W = W + I to also account for the diagonal values of b⇥. The matrix
regularization parameter ⇤ is then defined as

⇤i j =
⇢
⌘ for Wi j 6= 0,
� for Wi j = 0.

(4.1.1)

We set ⌘ = 0.1 and � = 0.95 for all the tests. For comparison purposes, we
retrieve another version of the precision matrix using a scalar regularization pa-

50 4.1 Estimating precision matrices

Dataset Specification
Name Disease K n p �

burczynski Crohn’s 3 127 22,283 0.7
yeoh Leukemia 6 248 12,625 0.8
shipp Lymphoma 2 58 6,817 0.8
alon Colon Cancer 2 62 2,000 0.6

Table 4.1: The specifications of the microarray datasets under consideration. Start-
ing from the left, we report the name, the type of disease the dataset describes, the
number of ground-truth classes K, the number of samples n, the dimension p, and
the scalar regularization parameter � that leads to the highest classification accu-
racy.

rameter �, penalizing equally all elements of b⇥. In this case we perform a grid
search for the values of � which provide the best classification, and report the
results with this optimal parameter. The � values for the respective datasets are
listed in Table 4.1.

In order to apply the LDA method, we consider k 2 N+ to be the class index
of a given sample, with each class having mean µk, and all classes sharing the
same precision matrix. Assuming a Gaussian distribution x⇠N(µk,⇥�1) for the
normalized medical data the linear discriminant function is defined as

⇢k(x) = x¸⇥µk �
1
2
µ¸k⇥µk + log ⇡̂k, (4.1.2)

where ⇡̂k = nk/n is the ratio of the number of samples of each class nk over the
number of total number of samples n. The class-average vector for each class is
computed as µk =

Ä
1
nk

äP
i2k xi. Then, the class C of a vector x is defined as

C(x) := arg max
k

⇢k(x). (4.1.3)

We perform training and testing incrementally for each class k. In the training
phase, we compute ⇡̂k and µk, and in the testing phase we evaluate ⇢k and assign
the samples to classes according to 4.1.3.

In Figure 4.5 we present the results comparing the matrix and scalar regular-
ization parameter in the runtime and accuracy of the LDA method. We observe
in Figure 4.5a that utilizing ⇤ may, in some cases, lead to a slight increase in the
runtime. However, this increase is not significant when compared to the perfor-
mance advantages of SQUIC over other state-of-the-art packages (see, e.g, results
in Figure 4.2). The runtime for the largest dataset, burczynski with p = 22283,

51 4.2 Estimating M -matrices

Scalar parameter � Matrix parameter ⇤

bu
rcz

.
ye

oh
sh

ipp alo
n

so
rli

e
0

50

100

150

Ru
nt

im
e

(s
ec

.)

(a)

bu
rcz

.
ye

oh
sh

ipp alo
n

so
rli

e
0.5

0.6

0.7

0.8

0.9

1

A
C

C
(b)

Figure 4.5: A comparison of (a) the runtime of SQUIC using scalar and matrix
regularization parameters, and (b) the LDA accuracy, measured in terms of ACC.
The datasets used are outlined in Table 4.1. Note that the runtimes show here are
for the computation of b⇥ using SQUIC which is the majority of the total runtime.
The runtime does not include the creation of the graphical bias emerging from the
MST of the dataset.

is estimated in 190 and 130 seconds when considering matrix and scalar param-
eters, respectively. Notably, in Figure 4.5b we see that the accuracy of all tests
is increased when using ⇤ with the MST graphical bias. The classification scores
are on average 14% higher when compared against the scalar counterpart.

4.2 Estimating M -matrices

This section outlines the analysis and test results that validate the performance,
accuracy, and real-world applicability of the introduced M -matrix retrieval al-
gorithms, SQUIC-fit and SQUIC-sqp. We begin in Section 4.2.1 with tests on
synthetic data to compare the accuracy and time-to-solution against various ex-
ternal state-of-the-art methods, and then shift in Section 4.2.2 our attention to
the way incorporating prior knowledge of the graphical structure of a dataset
influences the accuracy of the M -matrix retrieval. Then, in Section 4.2.3 we
identify the largest connected components of a graph emerging from the COVID-
19 daily cases in the USA, and perform spectral clustering with the M -matrix of
the largest component. Last, in Section 4.2.4 we classify image datasets of up to

52 4.2 Estimating M -matrices

p = 7·104 dimensions based on the eigenvectors of the estimated M -matrices.

Experimental setup

We will compare our methods against the following state-of-the-art graph learn-
ing packages:2

1. Combinatorial Graph Laplacian (CGL) [80]: Graph Laplacian estimation
via an iterative block-coordinate descent algorithm. The authors decom-
pose the original problem into a series of lower dimensional subproblems.
We use a cycle of 100 row/column updates for the minimization of the
objective function.

2. Structured Graph Learning (SGL) [59]: The graph Laplacian is estimated
by converting combinatorial structural constraints into spectral constraints,
and the resulting optimization problem is solved with an algorithm based
on quadratic methods. The parameter controlling the quadratic approxi-
mation term is set at � = 20, as suggested by the authors.

Since both external algorithms directly estimate the combinatorial graph Lapla-
cian in the set (2.4.7), we compare the accuracy of our proposed methods by
estimating the M -matrix b⇥ and then building the combinatorial graph Laplacian
as

bLi j =
⇢ b⇥i j, for all i 6= j
�
Pp

r:r 6=i
b⇥ir , for all i = j

(4.2.1)

The accuracy in the estimation of bL is measured again in terms of F-score, and in
terms of relative error (RE) defined as

RE=
kbL� LtruekF

kLtruekF
, (4.2.2)

where bL is the estimated matrix and Ltrue the true reference graph Laplacian.
Then, in Section 4.2.4 the accuracy of the classification assignments is measured
in terms of the unsupervised clustering accuracy (ACC 2 [0, 1]), and the nor-
malized mutual information (NMI 2 [0, 1]) [109]. For both metrics a value of 1
suggests a perfect grouping of the nodes according to the true labels.

2The CGL code is available at: https://github.com/STAC-USC/Graph_Learning.
The code for SGL is available as an R package at: https://cran.r-
project.org/web/packages/spectralGraphTopology/index.html.

https://github.com/STAC-USC/Graph_Learning
https://cran.r-project.org/web/packages/spectralGraphTopology/index.html
https://cran.r-project.org/web/packages/spectralGraphTopology/index.html

53 4.2 Estimating M -matrices

We base our results on two synthetic datasets generated from Gaussian dis-
tributions with a mean of zero and the following types of predefined graphical
structures:

• A grid graph structure denoted as G
(p)
grid, where p is the number of nodes.

Each node is connected to its four nearest neighbors (except the nodes at
the boundaries).

• A random structured matrix denoted asG(p)clust representing a graphical struc-
ture of p/100 balanced clusters with an average node degree of 20 and with
90% of the edges contained within the clusters [108].

Edge weights are then randomly selected based on a uniform distribution from
the interval [0.1,3]. From these structures we generate an IGMRF model parametrized
by the true graph Laplacian Ltrue. From this IGMRF model n samples are drawn
from the degenerate zero-mean multivariate Gaussian distribution yi ⇠N

�
0,L†

true

�
,

where L†
true is the Moore-Penrose pseudoinverse of Ltrue. The sample covariance

matrix S is computed as

S=
1
n

nX

i=1

�
yi � ȳi

� �
ȳi � yi

�¸
, with ȳi =

1
n

nX

i=1

yi. (4.2.3)

We follow the approach of [119] and define the regularization parameter as

� = c ·
∆

log (p)/n, (4.2.4)

unless specified otherwise. The scaling term
p

log (p)/n adjusts the regulariza-
tion according to p and n, and c 2 R is based on experimental results. The
convergence tolerance for all the methods is set to ⌧= 10�4, the threshold pa-
rameter for SQUIC-fit to  = 0, and all the results reported hereby correspond
to their mean value after 10 runs.

4.2.1 Comparisons with other methods

Our first round of numerical experiments is designed to evaluate and compare
the accuracy of the two proposed algorithms in the retrieval of synthetic combi-
natorial graph Laplacian matrices emerging from the graphical structure of G(64)

grid

and G
(60)
clust.

We generate 10 instances of each synthetic graph, and present in Figure 4.6
the mean accuracy results in terms of F-score and then in Figure 4.7 the associated

54 4.2 Estimating M -matrices

SQUIC-fit SQUIC-sqp CGL SGL

10�1 100 101 102

0.2

0.4

0.6

0.8

1

Ratio n/p

F-
sc

or
e

(a)

10�1 100 101 102
0.2

0.4

0.6

0.8

Ratio n/p

F-
sc

or
e

(b)

Figure 4.6: Accuracy comparisons between the different combinatorial graph
Laplacian estimation methods measured in terms of F-score for (a) the lattice grid
graph G

(64)
grid , and (b) the random clusters graph G

(60)
clust.

SQUIC-fit SQUIC-sqp CGL SGL

10�1 100 101 102

0

1

2

3

4

Ratio n/p

Re
la

tiv
e

er
ro

r

(a)

10�1 100 101 102
0

1

2

3

Ratio n/p

Re
la

tiv
e

er
ro

r

(b)

Figure 4.7: Accuracy comparisons between the different combinatorial graph
Laplacian estimation methods measured in terms of relative error (RE) for (a) the
lattice grid graph G

(64)
grid , and (b) the random clusters graph G

(60)
clust.

RE. The performance of the algorithms is compared for different ratios of sample
sizes n/p = {0.1, 0.25,0.5, 1,5, 10,25, 50,100}. The parameter c in (4.2.4) is
selected independently at each level for each method, and corresponds to the

55 4.2 Estimating M -matrices

SQUIC-fit SQUIC-sqp CGL SGL

101 102 103 104
10�3

10�1

101

103

Size (p)

Ti
m

e
(s

ec
)

(a)

102 103 104

10�1

100

101

102

103

104

Size (p)

Ti
m

e
(s

ec
)

(b)

Figure 4.8: Timing comparisons between the different graph Laplacian estimation
methods when learning b⇥ from synthetic graphs with an increasing number of p.
(a) Results for the lattice grid graph G

(p)
grid with p 2 {16, . . . , 16384}. (b) Results for

the random clusters graph G
(p)
clust with p 2 {100, . . . , 10000}.

one that maximizes the F-score. Additionally, for SQUIC-fit we set in (3.4.7)
⌘ = �/10.

For the lattice grid graphs (Figures 4.6a, 4.7a) SQUIC-fit achieves very high
F-scores and low RE for higher sampling ratios n/p > 1, and remains competitive
in the low sampling regimes n/p  1 in terms of F-score. The accuracy of our post
processing approach is similar to that of SGL, both in terms of F-score and RE. For
low sampling ratios n/p  1 SQUIC-sqp reports the best F-scores and RE, an ex-
pected behavior, as exploiting M -matrix constraints satisfies the model assump-
tions of attractive GMRFs. For the random clusters graphs (Figures 4.6b, 4.7b)
SQUIC-fit achieves the highest F-scores for sampling ratios n/p > 1, with its RE
reported being comparable with that of SGL. Our constrained approach SQUIC-
sqp reports here similar F-score and RE with CGL for all sampling regimes.

We then proceed with a comparison of the runtimes of the methods under
question. To this end, we consider a sequence of 6 true combinatorial graph
Laplacian matrices Ltrue of increasing size. In particular, for the lattice grid graph
G
(p)
grid we consider graphs of dimension p = {16,64, 256,1024, 4096,16384}, and

for the random clusters graph G
(p)
clust of p = {100, 200,1000,2000, 5000,10000}.

The number of samples is fixed in both cases at n = 500 and the parameter c
in (4.2.4) is again set for each method such that the best solution in terms of

56 4.2 Estimating M -matrices

F-score is reported at each p level. We report these timing comparisons in Fig-
ure 4.8. The timing results for CGL and SGL are excluded when the runtimes
exceed 104 seconds. For the lattice grid graph (Figure 4.8a) SGL exceeds this
time limit for p � 4096 and CGL for p = 16384. For the random clusters graph
(Figure 4.8b) the time limit is exceeded by SGL at p � 5 ⇤ 103 and by CGL at
p = 104. In Figure 4.8 we additionally observe that SQUIC-fit outperforms all
competing algorithms across all dimensions for both graphical structures. This is
an expected behaviour, as SQUIC-fit is the only unconstrained method included
in the comparisons. SQUIC-sqp is outperformed by CGL only in the lattice grid
experiments for the low dimensional cases p  64. In both synthetic cases the
SQUIC variants are up to 3 orders of magnitude faster that the competing meth-
ods for p � 256.

4.2.2 Incorporating graphical bias

We study here the recovery accuracy of the two introduced SQUIC algorithms
when using prior graphical knowledge in the estimation of the sparse M -matrix
b⇥. The graphical structure of the bias G is defined as a corrupted version of the
structure of the true graph Laplacian matrix Ltrue. We control the degree of this
corruption with a random symmetric sparse matrix Z 2 Rp⇥p with � · |Ltrue|/p
number of nonzeros per row. The structure of G is then defined as

Gi j =

®
0, if i = j,

I
Ä
Ltrue

i j > 0
ä
+ I

�
Zi j > 0

�
, if i 6= j.

(4.2.5)

Notice that for � = 0 we retrieve the exact structure of Ltrue, while for an in-
creasing � > 0 the structure of G has an increasing number of noisy entries. The
matrix regularization parameter is composed in similar fashion to (3.4.7) as

⇤i j =
⇢
�opt/b for Gi j 6= 0,
b ·�opt for Gi j = 0,

(4.2.6)

with �opt being the scalar coefficient resulting in the highest F-score, and b 2 R
a scalar parameter controlling the effect of the matrix bias on the regulariza-
tion. Larger values of b in (4.2.6) result in the matrix bias G being more strictly
enforced. We select b = 2 for a moderate influence of G on the estimated bL.

We consider two true graph Laplacian matrices emerging from the graphical
structure of G1024

grid and G
1000
clust with n = 500 number of samples. In Figure 4.9

57 4.2 Estimating M -matrices

SQUIC-fit SQUIC-sqp SQUIC-fit with � SQUIC-sqp with �

0 20 40 60
0.2

0.4

0.6

0.8

1

Noise factor �

F-
sc

or
e

(a)

0 20 40 60
0.4

0.6

0.8

1

Noise factor �

F-
sc

or
e

(b)

Figure 4.9: Studying the effect that incorporating the structure of G in the matrix
tuning parameter ⇤ has on the retrieval accuracy of bL. a) Results for the lattice grid
graph G

(1024)
grid . b) Results for the random clusters graph G

(1000)
clust . We use n = 500

samples in both cases.

we present the effect that an increasing noise factor � = {0,1, . . . , 70} has on the
retrieval accuracy of both SQUIC-fit and SQUIC-sqp in terms of F-score, and com-
pare it with the retrieval accuracy achieved by the algorithms when using a scalar
regularization parameter � with no graphical bias. Note that the corruption ma-
trix Z has no effect on the retrieval accuracy when using the scalar parameter �,
as no graphical bias is utilized in the composition of the penalty term. The best
F-scores achieved at the optimal scalar �opt are represented with the horizontal
dashed lines. Both introduced algorithms greatly outperform their scalar coun-
terparts when taking into account a noisy graphical bias G in the matrix sparsity
parameter ⇤ (solid lines). In particular, for the lattice grid graph G

(1024)
grid (Fig-

ure 4.9a) utilizing the graphical structure with SQUIC-fit improves the achieved
F-score of 0.49 for noise factors of �  35. For SQUIC-sqp improvements over
the baseline of F� score= 0.46 are observed for �  40. For the random clusters
graph G

(1000)
clust (Figure 4.9b) the baseline of SQUIC-fit is F� score = 0.59, and is

improved for �  30, while for SQUIC-sqp the best F-score of 0.56 is improved
when considering a graphical bias with �  45.

58 4.2 Estimating M -matrices

(a) (b) (c)

(d) (e) (f)

Figure 4.10: Visualizing the US counties corresponding to the six largest connected
components of the estimated b⇥ with p = 3209 dimensions. The available n = 671
samples describe the number of COVID-19 daily instances. The six components are
illustrated in a – f in descending order according to their size.

4.2.3 Clustering of COVID-19 daily cases

For this real-world study we consider the publicly available data for the US con-
firmed daily cases, reported at the county level [120], and emphasize that results
presented here are intended to highlight the capabilities of the proposed algo-
rithms and not to propose any course of COVID-19 related actions.3

The dataset under consideration consists of p = 3342 counties and reports
the number of daily COVID-19 cases C for n= 671 days for the time window 22
January 2020 to 23 November 2021. Counties with a small total number of casesP

n C < 100 are discarded, resulting in p = 3209. We normalize the remaining
daily cases by the number of residents per county in order to obtain information
on the infection rate per capita.4

Subsequently, the M -matrix b⇥ of the positively correlated counties is con-

3The COVID-19 Data Repository is provided by the Center for Systems Science and Engi-
neering (CSSE) at Johns Hopkins University at https://github.com/CSSEGISandData/COVID-
19. Puerto Rico municipalities are included.

4Demographic information of the USA at the county level is available at
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html.

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html

59 4.2 Estimating M -matrices

structed with SQUIC-fit in 72 seconds and with SQUIC-sqp in 211 seconds, and
the largest connected components of the resulting graphical structure are iden-
tified. For the SQUIC-sqp variant we use a scalar regularization parameter of
� = 0.7, and for the SQUIC-fit algorithm we set in (3.4.4) � = 0.7 and ⌘ = 2�/3
in (3.4.7). The matrices retrieved from both algorithms are almost identical, thus
in what follows we report the results obtained with SQUIC-fit.

We illustrate in Figure 4.10 the six largest connected components of b⇥. The
largest component (Figure 4.10a) includes 1774 counties from the entire USA,
the second one (Figure 4.10b) captures 165 counties from the states of Oklahoma
and Iowa, the third one (Figure 4.10c) 113 counties from Missouri, the fourth
one (Figure 4.10d) 81 counties from Michigan, the fifth one (Figure 4.10e) 79
counties from Nebraska, and the sixth largest connected component of b⇥ (Fig-
ure 4.10f) includes 66 counties from the state of Florida. The clear geographic
partition of the components 2� 6 demonstrates that SQUIC-fit successfully cap-
tures the positively correlated variables of the dataset.

We proceed with an analysis of the clusters present in the largest connected
component of b⇥. This component is denoted as b⇥a, and is used to build the
random-walk normalized graph Laplacian bLrw = D�1bL, where bL is defined as in
(4.2.1) and D is the diagonal degree matrix satisfying Dii = bLii for all i. After
computing the eigenvalues �k of bLrw the number of natural clusters present in
the dataset is estimated with the relative eigengap

�k =
�k+1 ��k

�k
, k æ 2. (4.2.7)

A high value of �k indicates that b⇥a admits a natural decomposition into at least
k clusters [121]. In order to obtain discrete partitions, the eigenvectors corre-
sponding to the k smallest eigenvalues of bLrw are clustered with the k-means
algorithm with 20 orthogonal and 10 random initializations [122].

We present the clustering results using b⇥a in Figure 4.11. According to the
relative eigengap, 8 distinct clusters are present in the subgraph. The locations of
the counties of each cluster are illustrated in Figure 4.11a, and the cardinality of
the respective clusters in Figure 4.11b. The largest cluster (black) captures 734
counties located mostly in the south and mideast states of Georgia, South and
North Carolina, Virgina, Tenessee, Kentucky, and the northwest states of Wash-
ington and Oregon and Alaska. The second largest cluster (orange) includes
279 counties in the northeast states of West Virginia, Pennsylvania, New York,
Maine, Delaware, the District of Columbia, the southwest state of California and
Hawaii. The third largest cluster (cyan) has 214 counties mostly located in the

60 4.2 Estimating M -matrices

(a) (b)

Figure 4.11: Spectral clustering of the largest connected component of b⇥ a) Geo-
graphical locations of the nodes belonging to each cluster. b) Cardinality of each
cluster. (Best viewed in color.)

neighboring states of North and South Dakota, Minnesota and Wisconsin. The
fourth cluster in size (dark blue) is comprised of 211 nodes in the states of Mas-
sachusetts, Ohio and Indiana. The fifth cluster (light blue) includes 169 nodes
mostly located in Illinois, Utah, Colorado and New Mexico. The sixth (green)
captures 101 counties of Arkansas and Alabama, the seventh (red) 56 counties
of Louisiana and finally the eighth (purple) 10 counties of New Hampshire.

We observe again that there is a clear geographical pattern in the retrieved
clusters. This indicates that the M -matrix b⇥a estimated by SQUIC-fit accurately
captures the latent graphical structure of the dataset, and that the resulting eigen-
vectors of bLrw are well suited for spectral clustering tasks.

4.2.4 Image classification

In this case study we demonstrate the applicability of the introduced algorithms
in the estimation of M -matrices emerging from image applications. We study
the problem of classifying facial images and handwritten characters according
to their labels by applying a spectral clustering routine on the eigenvectors of
the estimated random walk Laplacian bLrw. We consider the following publicly
available datasets

• YaleA [123]: A collection of p = 165 grayscale images of 15 individuals at
resolution n = 64 ⇥ 64 pixels. There are 11 images per subject, one per
different facial expression.

61 4.2 Estimating M -matrices

• Olivetti [124]: A set of 10 different facial images of 40 distinct subjects,
resulting in p = 400 instances at resolution 64⇥64 pixels, taken at different
times, varying lighting, facial expressions and facial details.

• USPS [125]: A balanced set of p = 11000 images of 10 distinct handwritten
digits with n= 16⇥ 16 pixels.

• KMNIST [126]: The entire Kuzushiji-MNIST balanced dataset with p =
70000 images of 10 modern Japanese hiragana characters at resolution
n= 28⇥ 28.

The high dimensionality p of these datasets renders them computationally unfa-
vorable for the CGL [127] and SGL [59] methods. We therefore compare here
our proposed algorithms against the traditional approach of building adjacency
matrices W. This approach consists of initially creating the connectivity matrix
G 2 Rp⇥p from a k-nearest neighbors routine, with the number of nearest neigh-
bors (NN) set such that the resulting graph is connected. For these datasets the
number of nearest neighbors needed for a connected graph is NN = 12 for YaleA
and Olivetti, and NN = 11 for both USPS and KMNIST. Subsequently, the simi-
larity matrix H 2 Rp⇥p between the data points is defined similarly to [128] as

Hi j = max{Hi(j),H j(i)} with Hi(j) = exp
⇣
�4

kyi�y jk2
�2

i

⌘
, with �i standing for the

Euclidean distance between the i-th data point and its k-th nearest neighbor. The
adjacency matrix W is then created as

W = G�H. (4.2.8)

We utilize the kNN connectivity matrix G as graphical bias for SQUIC-fit and
SQUIC-sqp and find the optimal scalar tuning parameter � = �opt for each case.
The matrix parameter ⇤ in (3.4.7) is then set with ⌘ = �opt/

pp for both SQUIC-
fit and SQUIC-sqp. Our strategy is thus penalizing the graphical bias G with a
decreasing rate for an increasing number of dimensions p. The goal is to obtain
within a reasonable amount of time graphical representations of the datasets
that are sparser than G and more accurate. Due to these favorable properties,
we anticipate that the retrieved M -matrices will lead to an increase in the classi-
fication accuracy metrics after applying a spectral clustering routine. Sparsity in
the graph is measured in term of edge density, defined as ✏= |E|/(|V |⇤(|V |�1)),
which is a ratio reflecting how close the graph is to a complete graph, with ✏= 1
for a complete graph.

The M -matrices of the 4 datasets under consideration are retrieved in t =
0.9,6.7, 46.3 and 1255.6 seconds with SQUIC-fit, and in t = 2.4,3.6, 31.5 and

62 4.2 Estimating M -matrices

YaleA Olivetti USPS KMNIST
Method density ACC NMI density ACC NMI density ACC NMI density ACC NMI

kNN �16.81% �5.13% �7.26% �9.39% �5.57% �5.29% �0.28% �12.63% �7.73% �0.24% �15.72% �11.54%
SQUIC-fit 0.083 0.613 0.650 0.04 0.646 0.7852 �0.02% 0.652 0.683 0.0003 0.61 0.587
SQUIC-sqp �8.32% �3.06% �4.62% �8.16% �1.87% �1.81% 0.002 �1.89% �1.85% �0.05% �0.23% �0.37%

Table 4.2: Classification results for the image datasets under consideration. We re-
port the edge density ✏, and the accuracy metrics ACC, NMI. The best value achieved
is presented in bold, and the percentages show how inferiorly the other methods
fared against it.

(a) (b)

Figure 4.12: Comparison of the graphical structure of the adjacency matrix A for a
subset of the dataset YaleA. The coloring indicates the edges that were removed (in
red) from the initial kNN graphical bias, and the edges (in gray) that remained after
the application of the two proposed algorithms. (a) Graph estimated with SQUIC-fit
with 398 remaining and 68 removed edges. (c) Graph estimated with SQUIC-sqp
with 432 remaining and 28 removed edges.

2024 seconds with SQUIC-sqp respectively. We summarize the rest of our results
in Table 4.2. For each dataset we report the edge density, the ACC and the NMI
achieved by the best method, and the percentage the remaining methods are
inferior to that value. Inferiority in percentage values is defined as I = 100 ·
� · (eref � ebest)/ebest, where ebest is the best value, eref the value it is compared
against, and �= �1 for minimization scenarios, as the edge density ✏, and �= 1
for maximization ones, as the accuracy metrics ACC and NMI.

Both SQUIC-fit and SQUIC-sqp improve the classification accuracy of the
traditional kNN graph for all the datasets considered. In particular, SQUIC-fit

63 4.2 Estimating M -matrices

achieves the highest accuracy metrics for all cases, and the lowest edge density
for all cases except USPS. The reduction of the edge density is more evident for
YaleA and Olivetti, as the tuning parameter ⌘ = �opt/

pp applied on the entries
of the graphical bias G has a lesser impact for graphs of low dimensions p. In
Figure 4.12 we illustrate this reduction in ✏ for the YaleA dataset. For visual
clarity we select a subset (variables 100 to 155) of the dataset, organized in five
distinct classes, denoted by the letters A to E, with each class composed by eleven
variables. We order the variables in a circular layout and compare the graphical
structure obtained by SQUIC-fit (398 gray edges in Figure 4.12a) and SQUIC-sqp
(432 gray edges in Figure 4.12b). The red edges in both figures represent the
edges that were removed from the graphical bias G, estimated with a kNN rou-
tine, after applying SQUIC-fit (68 edges) and SQUIC-sqp (28 edges). Multiple
edges that connect variables belonging to different classes are removed in both
cases, thus reducing the interclass connectivity of the graph. The advantages
of these sparser graphical structures, with edge weights assigned by solving the
MLE problem, are verified by the increased classification scores of Table 4.2.

Part II

Nonlinear spectral clustering

64

Chapter 5

Spectral methods for graph clustering

The aim of graph clustering is to distinguish groups of points according to their
similarities. If these data points are defined by a matrix describing pointwise sim-
ilarities, the problem of grouping them in k parts is treated as a graph partition-
ing problem with an undirected weighted graph G(V, E,W) being constructed.
Its nodes V represent the data points, and the similarity between the connected
edges E is encoded in the elements Wi j � 0 of the weight matrix W. Graph-
theoretic approaches have proven to be highly successful in characterizing and
extracting clusters. However, the resulting combinatorial optimization problems
frequently appear to be NP-hard [129].

Spectral clustering is a popular graph-based method due to the simplicity of
its implementation, the reasonable computation time, and the fact that it over-
comes the NP-hardness of other graph-theoretic approaches by solving a relaxed
optimization problem in polynomial time. Its idea is based on the eigendecom-
position of matrices that describe the connectivity of a graph [19]. The spectral
clustering of the total number of nodes n = |V | into groups C1, . . . , Ck is equiv-
alent to a partitioning problem, usually with a dual objective: high intracluster
similarity and low intercluster similarity is desired, while at the same time the
cardinality or the volume of the clusters should not differ excessively.1 Depend-
ing on the application domain, the idea of spectral decomposition can be applied
to either partitioning or clustering problems. The fundamental difference be-
tween them is the fact that in partitioning scenarios tightly balanced partitions
are favored [130], and are possibly enforced using additional constraints, while
in clustering the focus is on identifying the existence of communities [131] that
are not necessarily of equal size.

1In what follows n refers to the number of nodes in a graph, and not the available samples.
We reserve p to denote the value of the p-norm.

66

67 5.1 Graphs and graph cut metrics

In this chapter, we review some fundamental notions related to measuring the
quality of a graph partition in Section 5.1, and review the problem of splitting
a graph into two roughly equal segments with spectral methods in Section 5.2.
In Section 5.3 we consider a nonlinear reformulation of spectral bipartitioning
that leads to superior graph cut results, and in Section 5.4 we outline how multi-
ple clusters can be obtaining simultaneously from the eigenvectors of the graph
Laplacian operator. Last, in Section 5.5 we present the landscape of existing so-
lutions methods related to the clustering of eigenvectors of nonlinear variants of
the graph Laplacian.

5.1 Graphs and graph cut metrics

The dual objective of graph clustering, discussed previously, is reflected in the
balanced cut metrics presented below. When bisecting a graph G (V, E,W) into
two subsets C and its complement C = (V\C) the cut between them is defined
as

cut(C , C) =
X

i2C , j2C

Wi j. (5.1.1)

There are two main ways of measuring the size of one of these subsets C ⇢ V ,
and to thus balance the partitions accordingly. The first one is the cardinality,
which considers the number of nodes in each subset, and the second one the
volume, which measures the size of C by summing the weights of all edges that
are part of C . We define these metrics as

|C |= number of nodes in C , and, vol(C) =
X

i2C

Dii =
X

i2C

nX

j=1

Wi j. (5.1.2)

As balanced graph cut criteria we consider the ratio [132] and normalized cut [61],
which in the case of bisection read

RCut(C , C) =
cut(C , C)
|C | +

cut(C , C)
|C |

, (5.1.3)

NCut(C , C) =
cut(C , C)

vol(C)
+

cut(C , C)
vol(C)

. (5.1.4)

68 5.2 Spectral bipartitioning

Alternatively, one can consider the ratio Cheeger cut RCC(C , C) [22], which con-
trols the balance between the bipartitions in a marginally different way, as

RCC(C , C) =
cut(C , C)

min{|C |, |C |}
. (5.1.5)

The RCut and RCC partitioning metrics are related to each other

RCC(C , C) RCut(C , C) 2RCC(C , C), (5.1.6)

thus, minimizing for the ratio cut results in reducing the value of the Cheeger
cut as well. Extending (5.1.5) to its normalized counterpart follows naturally by
considering the volume of the clusters in the place of cardinality for balancing.

When trying to identify k clusters C1, . . . , Ck in the entire node set V , the RCut
and NCut metrics are commonly adapted to the task, and their expressions are
formalized as [133]

RCut(C1, . . . , Ck) =
kX

i=1

cut(Ci, Ci)
|Ci|

, (5.1.7)

NCut(C1, . . . , Ck) =
kX

i=1

cut(Ci, Ci)
vol(Ci)

. (5.1.8)

It is important to note that the graph cut criteria discussed here correspond to
nearly optimal clusters when their value approaches zero.

In spectral methods, the connectivity of G is usually described by means of
the 2-norm graph Laplacian matrix L 2 Rn⇥n. The graph Laplacian matrix L is a
symmetric, positive semi-definite and diagonally dominant matrix whose spectral
properties reveal a number of important topological characteristics of the graph
[60, 134]. We refer to our previous Section 2.4.1 for properties and normalized
variants of the graph Laplacian.

5.2 Spectral bipartitioning

In the case of bipartitioning, i.e., k = 2, we consider two complementary subsets
C , C such that C [C = V, C \ C = ?. An indicator vector u = (u1, . . . , un)

¸ 2 Rn

69 5.2 Spectral bipartitioning

is defined for the vertex set V = {v1, . . . , vn} with

ui =

8
<
:

r
|C |
|C | if vi 2 C ,

�
r
|C |
|C | if vi 2 C .

(5.2.1)

The ratio cut partitioning metric (5.1.3) can now be expressed in terms of the
graph Laplacian L with

RCut
�
C , C

�
=

u¸Lu
u¸u

. (5.2.2)

Furthermore, it can be seen from (5.2.1) that the indicator vector of node as-
signments u is orthogonal to the constant vector e, i.e., u¸ ·e= 0. Therefore, the
problem of minimizing the ratio cut (5.1.3) can be expressed as

minimize
C ,C2V

u¸Lu
u¸u

. (5.2.3)

This optimization problem is NP-hard, due to the discreteness of the indicator
vector, thus a relaxation approach is followed by allowing u to attain values in
all of R, i.e., ui 2 R. This relaxed optimization problem reads

minimize
u2Rn

u¸Lu
u¸u

(5.2.4a)

subject to u¸ · e= 0. (5.2.4b)

The objective function (5.2.4a) is the Rayleigh quotient of the graph Laplacian
matrix L. The minimum of the quotient is attained by the smallest eigenvalue
�1 = 0 of L, with the associated eigenvector v(1) = c ·e being the minimizer. How-
ever, this eigenpair corresponds to the trivial partition V = V [;. Additionally,
for nonconnected graphs, the multiplicity of the zero eigenvalue corresponds to
the number of connected components. Therefore, taking into account the con-
straint (5.2.4b) we seek the second-smallest eigenvalue, called the algebraic con-
nectivity of the graph [15], and its associated eigenvector. For a connected graph
G, this corresponds to v(2), also termed Fiedler’s eigenvector. It enables the par-
titioning of G into the two complementary sets C , C by thresholding its entries
around zero, or their median value for tightly balanced partitioning applications.
A computationally more expensive alternative, used more widely in clustering
applications, is to perform a sweep cut on the Fiedler eigenvector by sorting the
entries of v(2), considering each of the n� 1 cuts possible, and selecting the one

70 5.3 Bipartitioning with the graph p-Laplacian

that minimizes the RCut (5.1.3). This process can be easily generalized to the
normalized case Lrw [17], corresponding to a a minimization of the NCut (5.1.4).

Obtaining k clusters from the spectral graph bisection method is possible
by recursively bipartitioning the graph until the desired number of k clusters
is reached. At each recursive step, the partition whose bisection leads to smaller
values of the global ratio cut (5.1.7) is split into two. Alternatively, in order
to directly realize multiple strongly connected components of G the procedure
outlined in Section 5.4 is followed.

5.3 Bipartitioning with the graph p-Laplacian

Reformulating spectral graph partitioning in the p-norm, for p 2 (1, 2], is based
on the fact that better theoretical bounds on the balanced partitioning metrics,
introduced in Section 5.1, are achieved at the limit p ! 1. As p approaches
one, the resulting bipartition indicator vector u attains more discrete values and
leads to nearly optimal balanced graph cut metrics and tighter partitionings [23,
135, 136]. At the limit of p = 1, solving the total variation problem [137, 138]
has also been proven to be a tighter relaxation for balanced discrete graph cut
metrics than the 2-norm relaxation (5.2.3).

Let RCC be the optimal value of the Cheeger cut (5.1.5) for the bisection of
a graph into two complements C , C , i.e.,

RCC = inf
C

RCC(C , C), (5.3.1)

and let the value obtained by thresholding the entries of the second eigenvector
of the graph p-Laplacian be denoted by ⇤RCC. The theoretical bounds for the
approximation of an optimal cut with p-spectral bisection read [23]

RCC  ⇤RCC  p
⇣

max
i2V

Dii

⌘ p�1
p
(RCC)

1
p . (5.3.2)

The above inequality implies that as p ! 1 we have ⇤RCC ! RCC, thus the
Cheeger cut obtained by the second p-eigenvector approximates its optimal value.
Additionally, due to the relationship between the Cheeger and the ratio cut (5.1.6),
the ratio cut also approaches its optimal value for p ! 1. This suggests that p-
spectral bipartitioning is superior to its traditional 2-norm counterpart.

71 5.3 Bipartitioning with the graph p-Laplacian

The graph Laplacian operator is redefined in the p-norm for a node i 2 V as

�
�pu

�
i =

X

j2V

Wi j�p

�
ui � uj

�
(5.3.3)

and its normalized counterpart as
Ä
�(n)p u

ä
i
= 1

Dii

P
j2V Wi j�p

�
ui � uj

�
, with the

scalar function �p : R ! R being �p(x) = |x |p�1sign(x), for x 2 R. In what
follows we focus on the standard graph p-Laplacian case, but all concepts can be
easily generalized to the normalized one. The p-Laplacian operator is nonlinear,
with �p (�x) 6= ��p (x) for � 2 R and p 2 (1, 2), and the linear counterpart L is
recovered for p = 2, as �2(x) = x and L(·) =�p(·). Therefore, the action of the
standard graph Laplacian operator on a vector u 2 Rn can be generalized in the
p-norm as

hu,�pui=
1
2

nX

i, j=1

Wi j

��ui � uj

��p
. (5.3.4)

Similar to the approach followed in Section 5.2, we wish to obtain the second-
smallest eigenvector of the symmetric graph p-Laplacian �p 2 Rn⇥n in order to
minimize the value of the RCut (5.1.3). The Rayleigh-Ritz principle, extended
to the nonlinear case, states that a scalar value �p 2 R is called an eigenvalue
of �p if there exists a vector solution v 2 Rn such that

�
�pv

�
i = �p�p (vi), with

i = 1, . . . , n. In order to obtain the smallest eigenpair of the p-Laplacian operator,
we reformulate the Rayleigh quotient minimization problem from the linear 2-
norm case F2(u) : Rn! R,

F2(u) =
hu,Lui
kuk2

2

=
1
2

Pn
i, j=1 Wi j

�
ui � uj

�2

kuk2
2

, (5.3.5)

to the nonlinear one Fp(u) : Rn! R as

Fp(u) =
hu,�pui
kukp

p
=

1
2

Pn
i, j=1 Wi j

��ui � uj

��p

kukp
p

, (5.3.6)

with the p-norm defined as kukp =
p
qPn

i=1 |ui|p. A vector v 2 Rn is an eigen-
vector of �p if and only if it is a critical point of (5.3.6) [139]. The associated
p-eigenvalue is given by Fp(v) = �p. The functional Fp is nonconvex, and it is
easy to notice that for some scalar � 2 R it is invariant under scaling, and thus
Fp(�u) = Fp(u).

Additionally, fundamental properties of the graph Laplacian in the linear case

72 5.4 Direct multiway spectral clustering

p = 2, which relate the eigenspectrum of L to the algebraic connectivity of the
graph [15], can be extended to the nonlinear one for p 2 (1, 2]. The multiplic-
ity of the smallest p-eigenvalue �(1)p = 0 corresponds to the number of connected
components in the graph [23], and the associated eigenvector is constant. There-
fore, for a connected graph, we are searching for the second eigenvalue �(2)p of
Fp and the associated eigenvector v(2) in order to obtain a bipartition. Further-
more, any two eigenvectors v(↵),v(�), with ↵ 6= � , of the p-Laplacian operator
associated with nonzero eigenvalues are approximately p-orthogonal [140], i.e.,P

i�p(v
(↵)
i)�p(v

(�)
i)⇡ 0.

5.4 Direct multiway spectral clustering

Exploiting information from k eigenvectors of the graph Laplacian matrix L al-
lows the direct k-way partitioning of a graph into C1, . . . , Ck clusters, thus circum-
venting the need for a recursive strategy. The potential benefits of this approach
are discussed in Section 6.1.

A relaxation approach is followed again for the minimization of RCut (5.1.7).
We define k indicator vectors u j =

�
u1, j, . . . , un, j

�¸
such that for i = {1, . . . , n}, j =

{1, . . . , k},

ui, j =

(
1p
|Cj |

if vi 2 Cj,

0 otherwise.
(5.4.1)

The matrix U 2 Rn⇥k contains these k orthonormal vectors in its columns, thus
U¸U = I. The expression for estimating the global ratio cut (5.1.7) is now
RCut (C1, . . . , Ck) = tr (U¸LU) with tr being the trace of a matrix. The discrete
optimization problem for the minimization of (5.1.7) reads

minimize
C1,...,Ck

tr (U¸LU) . (5.4.2a)

Finding globally optimum solutions for this expression is again a known NP-hard
problem [129]. The optimization problem is therefore relaxed by allowing the
entries of matrix U to attain any value in R, i.e., u j 2 Rn. The relaxed optimiza-
tion problem now reads

minimize
U2Rn⇥k

F2(U) = tr (U¸LU) , (5.4.3a)

subject to U¸U = I. (5.4.3b)

Fan’s trace min/max principle [139] dictates that the solution to this minimiza-

73 5.4 Direct multiway spectral clustering

Figure 5.1: Spectral clustering of the “3elt" graph with 4720 nodes and 27444
edges. (Left) The graph visualized with its spatial coordinates (x , y). (Center)
The eigenvectors associated with the 4 smallest eigenvalues of the resulting graph
Laplacian. (Right) The discrete partitions obtained by the eigenvectors. We utilize
v(2) and v(3) as the spectral coordinates.

tion problem is given by a matrix U whose first k columns are spanned by the
eigenvectors associated with the k smallest eigenvalues of L. In order to obtain
discrete clusters from the resulting real valued eigenvectors we consider for the
n nodes of the graph n vectors hi = U¸i 2 Rk, 8 i 2 [1, n]. These are consid-
ered the spectral coordinates of the graph and have to be divided into k-groups
C1, . . . , Ck. Obtaining discrete partitions from the eigenvectors of the graph Lapla-
cian is commonly achieved with an external algorithm based on the relative dis-
tance between the eigenvectors. We provide more details on this procedure in
Section 6.2.2. These spectral coordinates can be also be utilized for graph draw-
ing purposes, and enjoy the advantages of leading to highly readable layouts
and a fast computation time. More specifically, spectral layouts place a vertex at
the centroid of its neighbors, with some deviation defined by the degree of each
node [141]. We visualize in Figure 5.1 the entries of multiple eigenvectors of
the graph Laplacian, the clusters which they induce, and the alternative graph
drawing that they enable for the finite element mesh “3elt" from the AG-Monien
Graph Collection [142].

Similar to the previous bisection approaches, this procedure can be general-
ized to the normalized functional F (n)2 that minimizes the NCut (5.1.8). In this
case the entries of the indicator vectors are defined as

ui, j =

(
1p

vol(Cj)
if vi 2 Cj,

0 otherwise.
(5.4.4)

With the relaxed constraint now reading U¸DU = I, the k columns of the matrix

74 5.5 Related work on p-spectral methods

solution U correspond to the eigenvectors spanned by the k smallest eigenvalues
of Lrw. This is the normalized spectral clustering approach introduced in [61].

As a final remark here, we note that the functional F2 is invariant under a
change of basis, i.e., F2 (UQ) = F2 (U) , for all Q belonging to the group of k⇥ k
orthogonal matrices, O(k) = {Q 2 Rk⇥k | Q¸Q = I}. This property will enable
the reformulation of our p-spectral clustering problem into an unconstrained
manifold minimization problem in the following Chapter 6.

5.5 Related work on p-spectral methods

Spectral clustering algorithms and extensions of the method have enjoyed tremen-
dous popularity since their introduction [18, 61]. Offering a comprehensive list
of all the algorithmic development since then goes beyond the scope of this the-
sis. We refer to [17] and [143] for an introduction to the topic and the theoretical
background, and to [21] for a more recent list of available algorithms.

We offer, instead, in what follows an overview of the methods related to the
nonlinear variants of spectral clustering The favorable theoretical properties of
the p-Laplacian have also attracted significant recent algorithmic development.
Following the seminal work of [23], using the same objective function, a self-
tuning p-spectral algorithm is proposed that determines the optimal value of
p [144]. The authors in [140] generalize this approach to multiway partition-
ing by employing a modified gradient descent update that converges to multi-
ple p-eigenvectors. The nodal properties of multiple eigenvectors of the graph
p-Laplacian were investigated in [62]. In [27] we introduced an explicit way
to handle the constraints between the first two eigenvectors of the p-Laplacian,
and a hybrid scheme to recursively partition large-scale graphs. In [145] the au-
thors express the p-Laplacian eigenproblem into a nonlinear eigenproblem with
eigenvector nonlinearity (NEPv), commonly encountered in quantum chemistry
applications. Tight relaxations based on the concept of total variation, leading
to similar sharp indicator eigenfunctions, have also been proposed for biparti-
tioning [138] and multiway problems [24, 146]. In [147] the concept of total
variation was utilized in multiclass transductive learning problems, and in [148]
to find the leading community of a graph. Reformulations of the spectral method
in different p-norms have also been employed in local graph clustering meth-
ods [149, 150], in hypergraph partitioning [151, 152], as well as in the clustering
of signed graphs [153].

Chapter 6

Direct multiway p-spectral clustering

We devote this chapter to the presentation of our multiway p-spectral clustering
algorithm on Grassmann manifolds. We motivate the development of our method
with some practical evidence in 6.1, and then we introduce the formulation of
the unconstrained minimization problem that leads to the clustering of graphs
in Section 6.2.

6.1 Motivation for multiple p-eigenvectors

Besides the theoretical advantages of performing spectral bipartitioning in the
p-norm, discussed in Section 5.3, we further show some practical considerations
that motivate our research on p-spectral clustering. The results that follow are
obtained by our algorithm, that will be introduced in the next section. We begin
by calculating the second eigenvector of the graph Laplacian L and of the graph p-
Laplacian �p for the 2-dimensional (2D) finite element mesh “grid1_dual" from
the AG-Monien Graph Collection [142], with 224 nodes and 420 edges. Sub-
sequently, we attempt to extract two clusters (k = 2) from the entries of the
second eigenvector by thresholding it around zero. The results are illustrated in
Figure 6.1. We plot the mesh (graph) on the horizontal axis (x , y coordinates)
and the eigenvector entries on the vertical one (z coordinate). Each eigenvector
entry is visualized using the x and y coordinates of the associated node of the
mesh, in order to demonstrate the clusters. In the standard spectral computa-
tions (p = 2) the entries of the Fiedler eigenvector v(2) are distributed uniformly
around zero. The number of cut edges is 20 and the value of the RCut = 0.179.
In contrast, the entries of the second p-eigenvector v(2)p for p = 1.1 are orga-
nized into two easily distinguishable partitions, while at the same time the size
of the edge cut is reduced to 16, and the value of RCut to 0.143. The reason

75

76 6.1 Motivation for multiple p-eigenvectors

(a) (b)

(c) (d)

Figure 6.1: Finding two clusters based on the entries of the second eigenvector of
the graph Laplacian L and of the graph p-Laplacian �p for a finite element mesh
(see text for details). The two partitions are depicted in black and gray, while the
cut edges are depicted in red. The z-axis represents the value of the entries of the
eigenvector, with their coloring indicating their distance from zero. (a) Standard
spectral computation (p = 2). (b) Spectral computation in the p-norm for p = 1.1.
(c) The standard spectral clusters. (d) The p-spectral clusters for p = 1.1.

for this improved performance in the p-norm is the fact that as p ! 1, the cut
obtained by thresholding v(2)p approaches its optimal value [20, 23]. When con-
sidering multiple eigenvectors (k > 2), this tendency towards optimal cut values
as p approaches one has been proven for graphs for which the number of strong
nodal domains of the eigenvector corresponding to the k-th smallest eigenvalue
�k is equal to k [62], e.g., the unweighted path graph. However, the applica-
tion of p-Laplacian direct multiway clustering in more general graphs has shown
promising results [140]. We demonstrate in Figure 6.2 the 2-norm and p-norm
eigenvectors associated with the 4 smallest eigenvalues of the random Delau-
nay triangulation “Delaunay11" from the 10th DIMACS Implementation Chal-
lenge [154]. The more discrete organization of the entries of the eigenvectors
in the p = 1.1 case is evident. We remind here that the last step of direct mul-
tiway spectral clustering algorithms involves the application of a distance-based
method (e.g., k-means) on the eigenvector entries. Clearly, the distribution of

77 6.1 Motivation for multiple p-eigenvectors

(a) (b)

(c) (d)

Figure 6.2: Finding k = 4 clusters based on the entries of the eigenvectors of the
graph Laplacian L and of the graph p-Laplacian �p for a random Delaunay trian-
gulation (see text for details). The cut edges are depicted in gray and the graphs are
visualized with v(2) and v(3) as the spectral coordinates. (a) The spectral eigenvec-
tors for p = 2. (b) The clusters for p = 2 with RCut = 0.901. (c) The p-spectral
eigenvectors for p = 1.1. (d) The clusters for p = 1.1 with RCut= 0.707.

points in Figure 6.2a is more favorable than the one in Figure 6.2c for a distance
based algorithm, thus leading to easily separable clusters that will approximate
the optimal RCut (5.1.7) or NCut (5.1.8) values. This hypothesis is validated by
the resulting clusters, visualized in Figures 6.2b and 6.2d using a spectral graph
layout. The 2-norm clusters have an associated RCut value of 0.901, while the
p-norm clusters reduce the RCut metric to 0.707.

In order to motivate the computation of multiple p-eigenvectors we addition-
ally consider the fact that recursive bisection is highly dependant on the decisions
made during the early stages of the process. Recursive methods suffer from the
lack of global information, as they do not optimize over the entire node set in
order to find k optimal partitions, but instead focus on finding optimal bisections
at each recursive step. Thus, they may result in suboptimal partitions [155]. This

78 6.2 A Grassmannian approach to p-spectral clustering

necessitates the further advancement of methods for direct multiway p-spectral
clustering.

6.2 A Grassmannian approach to p-spectral clustering

Taking into account the objective function for spectral bipartitioning in the p-
norm (5.3.6), the relaxed optimization problem of estimating multiple eigenvec-
tors of the graph Laplacian (5.4.3) can be reformulated in the p-norm as

minimize
U2Rn⇥k

Fp(U) =
kX

l=1

nX

i, j=1

Wi j|ul
i � ul

j|p

2kulkp
p

(6.2.1a)

subject to
nX

i=1

�p(ul
i)�p(um

i) = 0, 8 l 6= m, p 2 (1, 2], l 2 [1, k], m 2 [1, k].

(6.2.1b)

The cluster indices are denoted by l, m= 1,2, . . . , k. The final number of clusters
k can be considered predetermined, or estimated based on the relative eigengap
as in (4.2.7). The matrix U = (u1, . . . ,uk) contains the eigenvectors associated
with the smallest k eigenvalues of the p-Laplacian operator �p in its columns.
In the case of normalized p-spectral clustering the normalized functional reads
F (n)p (U) =

Pk
l=1

Pn
i, j=1

Ä
Wi j|ul

i � ul
j|p
ä
/
Ä
2Diikulkp

p

ä
. This scaling by the degree

Dii of the corresponding row i results in the matrix U containing the eigenvectors
of the normalized p-Laplacian operator �(n)p (see subsection 5.3) in its columns.
For brevity we restrict our analysis in this section in the case of unnormalized
p-spectral clustering.

The constraint for p-orthogonal eigenvectors (6.2.1b) renders the optimiza-
tion problem intractable. Therefore, we replace it with the traditional constraint
U¸U = I (5.4.3b), a tight approximation as shown in [140]. This constraint cor-
responds to the Stiefel manifold, which is composed of all orthogonal column
matrices

St(k, n) = {U 2 Rn⇥k | U¸U = I}. (6.2.2)

That is, a point in the Stiefel manifold is a specific orthogonal matrix [25].
Similar to standard direct k-way spectral clustering, we are interested in con-

verging to some orthonormal basis of the eigenspace and not on the exact eigen-
vectors [17]. The final transformation of the p-spectral coordinates into clus-
ters can be performed by either a flat algorithm like k-means or by rotating the

79 6.2 A Grassmannian approach to p-spectral clustering

normalized eigenvectors as shown in [156]. Both algorithms are based on the
relative distances between points and not on the exact values of their coordi-
nates. However, every set of orthonormal eigenvectors forming the matrix U is
considered to be unique on St, even if they correspond to the same basis. There-
fore, optimizing our objective (6.2.1a) over the Stiefel manifold leads to the well
known identifiability issue [157], with the redundantly big search space of the
Stiefel manifold causing slow convergence and the increased probability of get-
ting stuck in local minima for a nonconvex function. This behavior is illustrated
in Figure 6.3 for the problem of finding the first constant eigenvector of the graph
p-Laplacian �p for a graph representing the Ecoli dataset from the UCI collec-
tion [158]. Optimizing over the Stiefel manifold (in cyan) leads to a failure to
converge to the known constant solution v(1)p = c1 [23]. Thus, in this case, addi-
tional constraints have to be imposed, i.e., the Stiefel gradient corresponding to
the first eigenvector has to be set to zero in order for it to attain constant values.
This gradient correction approach guides the algorithm towards the correct so-
lution, but is not applicable to the rest of the k�1 eigenvectors of �p as there is
no theoretical guarantee for the values they should attain.

We thus consider the group of all k ⇥ k orthogonal matrices O = {Q 2
Rk⇥k |Q¸Q = I}. Searching for k nonspecific and mutually orthogonal vectors
as the solution to (6.2.1a) means that two solutions U1 and U2 belonging to the
Stiefel manifold are considered equivalent if there exists some Q 2 O(k) such
that U1 = U2Q. This corresponds to the Grassmann manifold, a quotient space
of St(k, n) [159], defined as

Gr(k, n)' St(k, n)/O(k) = {span(U) : U 2 Rn⇥k,U¸U = I}. (6.2.3)

Points on Gr(k, n) are understood as linear subspaces represented by an arbitrary
basis stored as an n-by-k orthonormal matrix [25]. The choice of the matrix U
for these points is not unique, unlike for the ones on St(k, n), with points on Gr

being defined through the relationship

UGr = {UQ | 8 Q 2O(k)}, U 2 Rn⇥k, n� k. (6.2.4)

Optimizing our objective over the Grassmann manifold results in a reduced search
space, with the solutions being an approximation of the orthonormal eigenvec-
tors of �p, that are satisfying fundamental properties of spectral graph theory
without imposing additional constraints. This behavior can be observed in Fig-
ure 6.3, where optimizing over the Grassmann manifold leads to the constant
first eigenvector of �p (in red) for the Ecoli dataset.

80 6.2 A Grassmannian approach to p-spectral clustering

0 100 200 300

0.05

0.1

0.15

0.2

Nodes
Fi

rs
t

p-
ei

ge
nv

ec
to

r

v(1)
Gr

v(1)
St

Figure 6.3: Values of the entries of the first eigenvector v(1) of�p for the Ecoli graph
(illustrated), after minimizing the functional (6.2.1a) over the Stiefel St and the
Grassmann Gr manifold. The graph in question is connected and thus v(1) should
be constant. This behavior is observed only on Gr (in red), as v(1) does not converge
to a constant vector on St (in blue).

Thus, we approximate function (6.2.1a) as being invariant to any choice of
basis and only depending on the subspace spanned by the p-eigenvectors, i.e.,
the columns of U. The optimization problem of (6.2.1) can now be reformulated
as an unconstrained problem on the Grassmann manifold as follows:

minimize
U2Gr(k,n)

Fp(U) =
kX

l

nX

i, j=1

Wi j|ul
i � ul

j|p

2kulkp
p

, p 2 (1, 2]. (6.2.5)

6.2.1 Optimization techniques

The previous section revealed that the direct multiway p-spectral clustering prob-
lem can be approximated as an optimization problem on a Grassmann manifold.
Manifold optimization has been extensively developed over the last couple of
decades, with the intention of providing robust numerical algorithms for prob-
lems on subspaces with a Riemannian structure. The work of [25] and [160] set
the foundation to analyze such problems, with a focus on establishing a theory
that leads to efficient numerical algorithms on the Stiefel St(k, n) and Grass-
mann Gr(k, n) manifolds. Specifically, they determine the Riemannian gradient
and Hessian as the most critical ingredients in order to design first- and second-
order algorithms on these subspaces. In particular, the Riemannian gradient and
Hessian are projections of their Euclidean counterparts onto the tangent space

81 6.2 A Grassmannian approach to p-spectral clustering

of the manifold and the mapping between them is well established. Thus, in our
case, the primary inputs to the manifold optimisation routines are the functional
Fp (6.2.5) along with its Euclidean gradient and optionally Hessian when using
second-order algorithms.

The entries of the Euclidean gradient (gk) of Fp with respect to uk
m read1

gk
m =

@ Fp

@ uk
m

=
p
kukkp

p

ñ
nX

j=1

Wmj�p

Ä
uk

m � uk
j

ä
��p

�
uk

m

� nX

i, j=1

Wi j|uk
i � uk

j |p

2kukkp
p

ô
.

(6.2.6)
The Hessian of the functional is not sparse and can cause storage and scaling
problems for big problem sizes. Hence, we use a sparse approximation of the
Hessian by discarding the low rank terms as shown in [23]. The Euclidean Hes-
sian follows the sparsity pattern of W and is approximated as

hk
ml =

@ gk
m

@ uk
l

⇡

8
>>><
>>>:

p(p� 1)
kukkp

p

nX

j=1

Wmj|uk
m � uk

j |p�2 if m= l,

�p(p� 1)
kukkp

p
Wml |uk

m � uk
l |p�2 otherwise.

(6.2.7)

Our objective function Fp(U) (6.2.5) is nonconvex for p 2 (1,2), and thus
convergence to a global minimum cannot be guaranteed. Minimizing Fp directly
for a small value of p results, in most cases, in convergence to a nonoptimal lo-
cal minimum. Therefore, we take advantage of the fact that our minimization
problem (6.2.5) exhibits a convex behavior for p = 2, and thus the global min-
imizer can be computed. The fact that Fp is also continuous in p suggests that
for close values of p1, p2, the solution of Fp1

(U), Fp2
(U) will be close as well [23].

Accordingly, to find a solution at a given p 2 (1,2) we solve (6.2.5) by gradually
reducing the value of p (starting from p = 2), with the solution at the current p
serving as the initial iterate for the next p-level. In previous works [23, 140] the
value of p was decreased linearly. We instead decrease p in a pseudocontinuous
fashion, inspired by second order interior point methods and the way they handle
the barrier parameter in order to achieve a superlinear rate of convergence [161].
The update rule for the value of p reads

p = 1+max
�
tol, min

�
 · (p� 1) , (p� 1)✓

��
, (6.2.8)

with  2 (0,1),✓ 2 (1,2), and tol = 10�1. The lower bound of this update

1The detailed derivation of the gradient is offered in Appendix A.

82 6.2 A Grassmannian approach to p-spectral clustering

rule is p � 1+ tol, thus avoiding numerical instabilities with the discontinuity at
p = 1. The value of p is decreased at a superlinear rate, with the majority of the
evaluations taking place close to p = 1, where the highest quality clusters are
expected to be obtained.

At each level of p, we minimize our objective with a Grassmannian New-
ton’s method, as it has proven to have a superlinear convergence rate close to
the local optima and quadratic elsewhere [160]. The linear substeps within
the Newton method are handled by a Grassmannian truncated conjugate gra-
dient scheme [162]. For sparse or banded adjacency matrices W with band-
width 2q + 1 the computational cost per Newton iteration on the Grassmann is
O(nq2k) + O(nk2). Such matrices are commonly encountered in practical real-
world applications. If the bandwidth is significantly more narrow, i.e. q2 ⇡ k,
or if W is tridiagonal then the cost becomes O(nk2) [163]. This reduction in
the cost per iteration suggests that for very large and sparse adjacency matrices
one can exploit the benefits from reordering methods that reduce the bandwidth
size [164].

There exists various software packages for Riemannian optimization. One of
the most popular choices, offering a wide variety of Riemannian optimization
algorithms and a user-friendly environment in MATLAB, is Manopt [165]. A
more recent library for manifold optimization is ROPTLIB [166]. Most of the
kernels in ROPTLIB are written in C++ and use the highly optimized BLAS and
LAPACK libraries for efficient linear algebra operations. We use ROPTLIB [166]
to perform the Grassmannian Newton’s steps, due to its superiority in terms of
computational runtimes. The Newton’s minimization procedure is terminated if
the norm of the gradient (kgk

mk) at iteration m is close to zero, i.e., kgk
mk/kgk

0k<
10�6. In addition to the stopping criteria for Newton’s method within each p level
we use a global stopping criterion based on cut values (RCut or NCut). If the cut
value increases by at least 5% compared to its value at the previous p level, we
terminate the algorithm and choose the cluster corresponding to the smallest cut
value, thus ensuring the semi-monotonic descent of our discrete objective.

6.2.2 Discretizing the p-eigenvectors

Similar to multiway spectral clustering in 2-norm (see Section 5.4), the final clus-
tering solution is obtained by discretizing the multiple p-eigenvectors, stored
in the matrix U, obtained after solving the Grassmannian optimization prob-
lem (6.2.5). Various approaches have been proposed for this discretization in
the 2-norm [21].

We consider two different methods for the discretization of the p-eigenvectors.

83 6.2 A Grassmannian approach to p-spectral clustering

The first one is k-means, which is the most commonly used algorithm for the clus-
tering of eigenvectors. However, the results of k-means depend heavily on the ini-
tial guess, and, therefore, the algorithm is usually run multiple times with differ-
ent initial guesses and the best result is picked. We follow the approach of [122]
with multiple orthogonal and random initial guesses that generally lead to a
stable result. The second algorithm that we employ for the clustering of the p-
eigenvectors is applicable only when minimizing the NCut graph cut metric. It is
based on the fact that the application of a rotation matrix P transforms the matrix
U, containing the normalized p-eigenvectors in its columns, into a cluster indica-
tor matrix containing only one nonzero entry per row that indicates the cluster in-
dex [21]. We consider the set of indicator matrices J = {J 2 {0,1}n⇥k : J·ek = en}
and search for the matrices J and P that minimize the functional

min
P¸P=I
J2J

f (P, J) = min
P¸P=I
J2J

kUP� JkF . (6.2.9)

We follow the approach of [156] for the solution of this optimization problem,
that iteratively computes this discretization using singular value decomposition
and non-maximum supression. In what follows, the clustering solutions obtained
by employing k-means on the p-eigenvectors are denoted as pGrass-kmeans,
and the ones obtained by the rotation of the normalized eigenvectors after solv-
ing (6.2.9) are denoted as pGrass-disc.

6.2.3 Multiway p-Grassmann clustering algorithm

A general summary of the algorithmic scheme employed for the unnormal-
ized (RCut based) or normalized (NCut based) multiway p-Grassmann spectral
clustering is offered in Algorithm 6. The MATLAB source code is available on
GitHub at

https://github.com/DmsPas/Multiway-p-spectral-clustering.

The inputs of the algorithm are the adjacency matrix W of the graph in ques-
tion, the number of the desired clusters k, the parameters , ✓ from (6.2.8),
the final value of p denoted as p!, and whether the clustering will be based on
the unnormalized (RCut) or the normalized (NCut) objective. As output we ob-
tain the indices of the vertices forming the clusters and the discrete cut value
of the clustering. In steps 2 � 8 we solve the optimization problem for p = 2
and obtain k-eigenvectors stored in matrix U. Their discretization, through the
k-means algorithm or the solution of (6.2.9), is performed in step 9, and the cut

https://github.com/DmsPas/Multiway-p-spectral-clustering

84 6.2 A Grassmannian approach to p-spectral clustering

Algorithm 6 p-Grassmann spectral clustering
Input: adjacency matrix W, number of clusters k, , ✓ , final p value p!, normalized
Output: cluster indices cbest, cut value rbest
1: function pGrassmannClustering
2: if normalized then
3: Find U: minimize

U2R(k,n)
F (n)2 (U) using W ‹ See section 5.4

4: Cut = NCut
5: else
6: Find U: minimize

U2R(k,n)
F2(U) using W

7: Cut = RCut
8: end if
9: cbest = c = discretize(U) ‹ Obtain discrete solution; see section 6.2.2

10: rbest = rnew = rold = Cut(c) ‹ Initialize the cut value acc. (5.1.7) or acc. (5.1.8)
11: p = 2 ‹ Initialize the value of p.
12: while p � pw && rnew  1.05 · rold do
13: Reduce p ‹ Pseudocontinuous reduction acc. (6.2.8)
14: if normalized then
15: Find U: minimize

U2Gr(k,n)
F (n)p (U) using W ‹ See section 6.2.

16: else
17: Find U: minimize

U2Gr(k,n)
Fp(U) using W

18: end if
19: c = discretize(U) ‹ Obtain discrete solution; see section 6.2.2
20: rold = rnew
21: rnew = Cut(c) ‹ Update the cut value acc. (5.1.7) or acc. (5.1.8)
22: if rnew < rbest then
23: rbest = rnew
24: cbest = c
25: end if
26: end while
27: return cbest, rbest ‹ optimal solution
28: end function

value is initialized accordingly in step 10. The main loop of the algorithm in
steps 12� 25 terminates if the value of p, which is initialized in 11 and reduced
in a pseudocontinuous fashion in 13, reaches the final value p! or the cut value
stops decreasing monotonically, with a tolerance of 5% on this monotonic reduc-
tion. The multiple unormalized or normalized p-eigenvectors are estimated on
the manifold Gr(k, n) in steps 14� 18, and the discrete solution is obtained in
19. Then the cut values are updated in steps 20 � 24 if they are smaller than
their value in the previous iteration.

Chapter 7

Numerical results for graph clustering

We demonstrate in what follows the effectiveness of the p-Grassmann spectral
clustering method, summarized in Algorithm 6. We begin by reporting the setup
of our numerical experiments, listing the external methods considered in our
comparisons, and discussing on the key differences between our approach and
the most closely related method considered. Our results on synthetic graphs are
presented in Section 7.1, and on graphs emerging from real-world classification
problems in Section 7.2.

Experimental setup

For all test cases we report results concerning the quality of the cut in terms of
RCut (5.1.7) and NCut (5.1.8), unless specified otherwise. The corresponding
accuracy of the labelling assignment is again measured in terms of the unsuper-
vised clustering accuracy (ACC 2 [0, 1]) and the normalized mutual information
(NMI 2 [0,1]) [109]. We remind here that for both metrics a value of 1 suggests
a perfect grouping of the nodes according to the true labels. To this end, we
work strictly with graphs that have ground-truth labels, and set the number of
clusters k equal to the total number of labelled classes. However, our approach is
directly applicable to graphs with no ground-truth information for unsupervised
community detection. We use MATLAB R2020a for our implementation, and run
experiments on a total of 80 graphs, organized in 2 sets. The first one comprises
27 artificial test cases, with the purpose of demonstrating the impact of differ-
ent optimization aspects of p-Grassmann spectral clustering. The second one
includes 53 graphs originating from image classification and text recognition ap-
plications. For all methods under consideration we report the mean results after
10 runs. The connectivity and similarity matrices, that compose the adjacency,
are created in the same fashion as in Section 4.2.4, with a k-nearest neighbors

85

86

routine and a Gaussian similarity kernel based on Euclidean distances respec-
tively.

The maximum number of Newton iterations for our method is set to 20 for
every p-level, and the final p-level is set to p! = 1.1. We fix the parameters
of (6.2.8) at  = 0.9,✓ = 1.25. This selection results in the following 8 total
p-levels, i.e. p = {2, 1.9,1.71, 1.539,1.3851, 1.2466,1.171, 1.1}. When using
k-means for the discretization of the p-eigenvectors (pGrass-kmeans) we con-
sider 10 orthogonal and 20 random initial guesses. In order to select the best
result out of the different k-means runs we use our discrete objective, i.e., RCut
or NCut (lower the better) as the primary ranking metric. Then the labelling
accuracy metrics (ACC, NMI) are calculated based on the clusters obtained from
the minimization of the cut values. When solving (6.2.9) for the clustering of
the p-eigenvectors (pGrass-disc) the solution is unique.

We compare our method against a diverse selection of state-of-the-art clus-
tering algorithms, that target the minimization of RCut or NCut, namely

1. Spec [17]: Traditional direct multiway spectral clustering. We consider
the eigenvectors of the combinatorial graph Laplacian L for unnormalized
clustering, and follow the approach of [156] with Lrw for the normalized
case.

2. pSpec [23]: Recursive bi-partitioning with the unnormalized and normal-
ized graph p-Laplacian, using a hybrid Newton-gradient descent scheme
for the minimization of the nonlinear objective.

3. kCuts [146]: A tight continuous relaxation for the balanced direct k-cut
problem, using a monotonically descending algorithm for the minimization
of the resulting sum of Rayleigh quotients. The method is applicable for
the minimization of a variety of discrete graph cut metrics, including RCut
and NCut. We use 12 starting initializations for the routine, as suggested
by the authors.

4. Graclus [167]: A multilevel algorithm that optimizes for various weighted
graph clustering objectives using a weighted kernel k-means objective, thus
eliminating the need for eigenvector computations. We use the Kerhighan-
Lin [168] algorithm at the coarsest level clustering and perform 10 local
searches at each level for increased accuracy. Graclus minimizes directly
only the NCut, thus it is omitted from any comparisons in the computation
of the RCut and the associated accuracy metrics.

87

0 0.04 0.08 0.1
0

0.5

1

1.5

2

⌘

F(
u
+
⌘
)�

F(
u)
/h
⌘

,r
F(

u)
i

pGrass
pMulti

(a) Accuracy of gradient.

0 200 400

1

1.5

2

Nodes

Fi
rs

t
p-

ei
ge

nv
ec

to
r pGrass

pMulti

(b) The first eigenvectors v(1)p of �p.

Figure 7.1: Analysis of key differences between the pMulti [140] and the pGrass
(ours) algorithms. (a) The accuracy of the approximated gradients compared
against their numerical approximation using a first order Taylor approximation.
The x-axis denotes the different step size (⌘) used in the Taylor expansion (see text
for details). The experiment is conducted using the UMIST dataset with a p value
of 1.8 and k = 20 number of clusters. (b) The values of the first eigenvector v(1)p of
the graph p-Laplacian �p for the UMIST dataset, estimated by the two methods.

5. pMulti [140]: The first full eigenvector analysis of the p-Laplacian lead-
ing to direct multiway clustering, and the most directly related method to
our p-Grassmann approach. The discrete minimization objective for this
approach is the RCut, thus we omit it from any NCut based comparisons.

The code for the methods outlined in 1-4 is available online.1 We imple-
ment method 5, as described in [140], briefly outline here the key differences
from our approach, and visualize them in Figure 7.1. The minimization of the
constrained multiway p-spectral problem (6.2.1) is achieved through an approx-
imated gradient descent scheme which suffers from inaccuracies. This is illus-
trated in Figure 7.1a, where the ratio of directional derivative F 0 obtained us-
ing a first order Taylor expansion is compared to that of the computed gradient
from [140] and ours (6.2.6), for the UMIST dataset [169] at p = 1.8.2 The ratio
of (F(u+⌘)� F(u))/h⌘,rF(u)i should ideally approach one as the step size ⌘

1The Spec code is available at: https://github.com/panji530/Ncut9. The pSpec code is avail-
able at: https://www.ml.uni-saarland.de/code/pSpectralClustering. The kCuts code is avail-
able at: https://www.ml.uni-saarland.de/code/balancedKCuts. The Graclus code is available
at: https://www.cs.utexas.edu/users/dml/Software/graclus.html.

2The first order Taylor expansion reads F(u+⌘) = F(u) + h⌘,rF(u)i, where ⌘ is the step
size.

https://github.com/panji530/Ncut9
https://www.ml.uni-saarland.de/code/pSpectralClustering/pSpectralClustering.htm
https://www.ml.uni-saarland.de/code/balancedKCuts/balancedKCuts.zip
https://www.cs.utexas.edu/users/dml/Software/graclus.html

88 7.1 Experiments with artificial data

(a) (b)

Figure 7.2: A subset of the synthetic datasets used. (a) One of the Gaussian datasets
considered in Subsection 7.1.2 with k = 8 ground-truth clusters, n = 3200 nodes
and m = 19319 edges. b) The worms dataset, considered in Subsection 7.1.3,
consists of n = 5967 points with three ground-truth communities. The resulting
graph has m= 36031 edges.

in the Taylor expansion decreases. However, with the approximated gradient de-
fined in [140] this is not the case. Due to this gradient inaccuracy, fundamental
properties of the spectrum of �p are no longer valid. For example, the degener-
acy of the eigenvalues, corresponding to the constant eigenvectors v = c · e, no
longer indicates the number of connected components in the graph. In contrast,
our p-Grassmann approach, referred to as pGrass, preserves this fundamental
property of �p, as illustrated in Figure 7.1b. Furthermore, since the functional
F is nonconvex the modified gradient descent approach used in their work has
a suboptimal convergence rate, as opposed to the properties of our method. Fi-
nally, the linear reduction rate of p in [140] results in fewer evaluations taking
place close to p ⇡ 1, and their method considers only the minimization of the
unnormalized p-spectral objective, associated with the RCut metric.

7.1 Experiments with artificial data

In this section we focus on artificial datasets widely used as test cases for clus-
tering algorithms, in order to display the behavior of our pGrassmann clustering
algorithm in challenging scenarios. Some of the synthetic cases that we consider
are visualized in Figure 7.2. In Section 7.1.1 we are interested in studying the
effect that the reduction of the value of p has on the clustering result for a graph
corrupted by high dimensional noise, and for a set of 16 stochastic block model
graphs. In Section 7.1.2, we shift our attention to Gaussian datasets, and study
the impact a large number of ground-truth classes has on the accuracy of our
method. Last, in Section 7.1.3 we take a closer look at the eigenvectors of the

89 7.1 Experiments with artificial data

graph p-Laplacian and the differences between standard spectral and p-spectral
embedding on a synthetic dataset with three ground-truth clusters. The results
obtained by discretizing the p-eigenvectors with the k-means algorithm and by
solving (6.2.9) are almost identical for these artificial datasets, therefore in what
follows in this section only the results of pGrass-kmeans are presented, and are
referred to as pGrass.

7.1.1 Reducing the value of p

We initially study the impact of the reduction of the value of p 2 (1, 2] in (6.2.5)
on the high dimensional two-moons dataset, which is frequently used in evalu-
ating graph clustering algorithms. It consists of two half-circles in R2 embedded
into a 100-dimensional space with Gaussian noise N(0,�2I100). This high di-
mensional noise results in a complex edge formation, as illustrated in Figure 7.3
for n = 2,000 points and a variance of �2 = 0.02. In Figure 7.3a we show the
effect of reducing p from 2 towards 1 on the resulting RCut and on the associated
labelling accuracy metrics (ACC, NMI), and in Figure 7.3b we show the accuracy
results of the normalized p-Grassmann clustering variant with NCut as its objec-
tive. In both cases the monotonic descent of the graph cut metrics leads to nearly
perfect accuracies at p = 1.1. In Figure 7.3c we present the results obtained by all
the methods considered. Our algorithm performs significantly better than Spec,
pMulti and Graclus, while it achieves almost identical cut and accuracy values to
the pSpec and kCuts methods. The identical results with pSpec are expected in
this case, as for a number of clusters k = 2 the minimization objective of [23] is
equivalent with ours (6.2.5).

We further demonstrate in Figure 7.4 the effectiveness of the introduced
Algorithm 6 in finding the best available clusters even in scenarios where the
discrete graph cut metrics are not monotonically descending for a decreasing
value of p. To this end, we consider the LFR model [170], which is a stochas-
tic block model whose nodes’ degrees follow the power law distribution with
a parameter µ controlling what fraction of a node’s neighbours is outside the
node’s block. We follow the approach of [149] and pick µ 2 [0.1, 0.4], with
this range giving rise to graphs that contain increasingly noisy clusters for an
increasing value of µ. The number of clusters in this benchmark ranges from
k = 17 to k = 20. In Figure 7.4a we show the value of NCut and of the associ-
ated accuracy metrics ACC and NMI for the case with µ = 0.38. The monotonic
minimization of NCut, with a tolerance of 5% as specified in Algorithm 6, is in-
terrupted at p = 1.539. At this p-level the graph cut reaches a minimum value of
NCut= 7.187, with the corresponding accuracy metrics being at their maximum

90 7.1 Experiments with artificial data

11.52

0.24

0.26

0.28

0.3

C
ut

Va
lu

e

11.52

0.4

0.6

0.8

1

p

A
cc

ur
ac

y

RCut
ACC
NMI

(a)

11.52

0.08

0.09

0.1

0.11

C
ut

Va
lu

e

11.52

0.4

0.6

0.8

1

p

A
cc

ur
ac

y

NCut
ACC
NMI

(b)

Method RCut ACC NMI NCut ACC NMI

pGrass 0.2355 0.9460 0.6968 0.0812 0.9470 0.7011
Spec 0.3109 0.8375 0.3631 0.1073 0.8385 0.3653
pSpec 0.2355 0.9460 0.6968 0.0812 0.9470 0.7011
kCuts 0.2344 0.9455 0.6953 0.0812 0.9470 0.7010
Graclus - - - 0.0836 0.8405 0.4064
pMulti 0.2677 0.8660 0.4437 - - -

(c)

Figure 7.3: Clustering the two-moons dataset (illustrated). (a) The estimation of
RCut and of the associated ACC and NMI with the pGrass algorithm for p 2 [1.1,2].
(b) The estimation of NCut and of the associated ACC and NMI with the pGrass
algorithm for p 2 [1.1, 2]. (c) Comparative results for the clustering methods under
consideration.

values ACC = 0.9970, NMI = 0.9944. Our algorithm stops the reduction of the
value of p at this level, however we report the results of the optimization proce-
dure up to the final level of p = 1.1, in order to demonstrate that the increasing
nonlinearity close to p ⇡ 1 may lead to unfavorable groupings of the nodes.
At the final p-level the value of the graph cut has ascended to NCut = 7.228,
with the values of the accuracy metrics being decreased at ACC = 0.9850 and
NMI = 0.9737. In Figure 7.4b we plot the norm of the gradient kgk

mk over the
Newton iterations m for the levels p = 1.539 (best solution) and two subsequent
levels closer to p ⇡ 1 (p = 1.385, p = 1.171). The monotonic minimization of
kgk

mk at the best p-level is followed by an increasingly oscillating behavior as
p ! 1. This showcases that the monotonic minimization of our discrete graph

91 7.1 Experiments with artificial data

11.52

7.2

7.22

C
ut

Va
lu

e

11.52

0.98

0.99

1

p

A
cc

ur
ac

y

NCut
ACC
NMI

(a)

0 10 20
0

0.2

0.4

0.6

Newton Iterations m

G
ra

di
en

tN
or

m
kg

k m
k

p = 1.539
p = 1.385
p = 1.171

(b)
Best Strictly Best

pG
ra

ss
Sp

ec
pS

pe
c

kC
ut

s
pM

ul
ti

0

30

60

90

Pe
rc

en
ta

ge
%

(c) RCut

pG
ra

ss
Sp

ec
pS

pe
c

kC
ut

s
pM

ul
ti

0

30

60

90

(d) RCut-based ACC

pG
ra

ss
Sp

ec
pS

pe
c

kC
ut

s
pM

ul
ti

0

30

60

90

(e) RCut-based NMI

pG
ra

ss
Sp

ec
pS

pe
c

kC
ut

s
Gr

ac
lu

s

0

30

60

90

Pe
rc

en
ta

ge
%

(f) NCut

pG
ra

ss
Sp

ec
pS

pe
c

kC
ut

s
Gr

ac
lu

s

0

30

60

90

(g) NCut-based ACC

pG
ra

ss
Sp

ec
pS

pe
c

kC
ut

s
Gr

ac
lu

s

0

30

60

90

(h) NCut-based NMI

Figure 7.4: Clustering the LFR benchmark datasets with a noise component µ. (a)
NCut values and the associated ACC and NMI for µ= 0.38 for a decreasing value of
p. (b) Norm of the gradient kgk

mk over Newton iterations m for µ = 0.38 for three
different p-levels. (c)–(h) Collective results of the fraction of times a method achieves
the best and the strictly best metrics for the entire benchmark with µ 2 [0.1, 0.4].

92 7.1 Experiments with artificial data

cut metric NCut is directly associated with the monotonic decrease of the gra-
dient norm of our continuous objective (6.2.6). The proposed pGrass algorithm
is guaranteed to find the best available solution from all p-levels under consid-
eration. This is highlighted in Figures 7.4c – 7.4h, where the results for all LFR
benchmark datasets (in total 16 cases) for all the methods under consideration
are collected. We present the percentage of times a method found the best and
the strictly best solution in terms of graph cut metrics (RCut, NCut), and the as-
sociated labelling accuracy values in ACC and NMI. Our p-Grassmann clustering
routine outperforms the external methods Spec, pSpec, pMulti and Graclus in
all the metrics under question, and achieves comparable scores with the kCuts
algorithm. In particular, the unnormalized pGrass algorithm achieves the best -
strictly best solutions in 75% - 37.5% of the cases when minimizing the RCut, in
68.75% - 0% when finding the associated ACC and in 75% - 37.5% when finding
the associated NMI. The corresponding percentages for the kCuts algorithm are
37.5% - 0% for RCut, 75% - 12.5% for ACC, and 50% - 12.5% for NMI. The nor-
malized pGrass algorithm achieves the best - strictly best solutions in 81.25% -
12.50% of the cases when minimizing the NCut, in 87.50% - 18.75% when find-
ing the associated ACC, and in 81.25% - 25% when finding the associated NMI.
The corresponding percentages for the kCuts algorithm are 81.25% - 12.5% for
NCut, 81.25% - 6.25% for ACC, and 56.25% - 12.5% for NMI. The numeric val-
ues of the results for the LFR benchmark datasets are summarized in Table B.1
in Appendix B.

7.1.2 Increasing the number of clusters

In order to study the clustering quality of our algorithm as the number of clusters
(k) increases we utilize a set of synthetic Gaussian datasets with an increasing
number of ground-truth communities. Each dataset consists of k clusters con-
taining 400 points each. The clusters are generated using a Gaussian distribution
with a variance of�2 = 0.055, with the mean of each cluster then placed equidis-
tantly on a 2D square grid (see Figure 7.2a). For the experiment we generated
datasets with varying k = {2,5, 8,18, 25,32, 41,50, 61}, resulting in 9 graphs
with an increasing number of nodes, edges and clusters.

In Figure 7.5 we present the mean values and the standard deviation of the
cut metrics and the associated accuracy metric NMI for the Gaussian datasets.
In Figure 7.5a we show the results obtained when minimizing RCut and in Fig-
ure 7.5b the corresponding NMI. Our pGrass clustering routine finds the min-
imum RCut in 7/9 cases and the strictly minimum in 5/9 cases. In terms of
NMI, pGrass attains the maximum in 8/9 cases and the strictly maximum in 7/9

93 7.1 Experiments with artificial data

pGrass Spec pSpec kCuts pMulti Graclus

0 20 40 60
0

1

2

Number of Clusters k

R
C

ut

(a)

0 20 40 60

0.85

0.9

0.95

1

Number of Clusters k

N
M

I(
ba

se
d

on
R

C
ut

)

(b)

0 20 40 60
0

0.5

1

1.5

Number of Clusters k

N
C

ut

(c)

0 20 40 60

0.8

0.9

1

Number of Clusters k

N
M

I(
ba

se
d

on
N

C
ut

)

(d)

Figure 7.5: Clustering the Gaussian datasets with an increasing number of clusters
k. (a) RCut values for all the methods under consideration. (b) NMI values for
all the methods under consideration based on the RCut. (c) NCut values for all the
methods under consideration. (d) NMI values for all the methods under considera-
tion based on the NCut.

cases. The results obtained when attempting to minimize the NCut are shown
in Figure 7.5c, with the corresponding NMI values shown in Figure 7.5d. Our
algorithm finds the best NCut in 7/9 cases and the strictly best in 5/9 cases. In
terms of NMI our algorithm fares the best in 7/9 cases and the strictly best in 6/9
cases. No significant deviations from the mean values are reported for pGrass.

We note that in both the normalized and unormalized experiments the ben-

94 7.1 Experiments with artificial data

efits of our method are becoming more evident as the number of clusters k in-
creases. In particular, for k � 25 pGrass attains the strictly best results in terms
of both graph cut and labelling accuracy. This behavior demonstrates that the
p-Grassmann algorithm is favorable for clustering datasets with a large number
of clusters not only from recursive approaches (pSpec, Graclus), which is ex-
pected due to the recursive methods’ instabilities [155], but also from the direct
multiway methods under consideration (Spec, kCuts, pMulti).

7.1.3 p-spectral embedding

In order to highlight the differences between the embeddings achieved using the
eigenvectors of the combinatorial graph Laplacian �2 and those of the graph p-
Laplacian�p, we utilize the “Worms2" dataset [171]. This dataset is composed of
three individual worm-like shapes that start from a random position and move to-
wards a random direction. Points are drawn according to a Gaussian distribution
with both low and high variance components that are gradually increasing as the
points populate the 2D space. The direction of the generation of each worm-like
shape is orthogonal to the previous one. The dataset consists of n= 5,967 points
with three ground-truth communities and the resulting graph has m = 36,031
edges (see Figure 7.2b).

We visualize the embedding results obtained by standard spectral clustering
(Spec) and our method (pGrass) in Figure 7.6. There are three distinct clusters
in the dataset. We utilize the second and third eigenvectors as the x- and y-
axis, respectively. Note that this analysis is not possible for recursive bisection
methods, since information regarding only v(2) is available at each step. The p-
spectral embedding (Figure 7.6b) organizes the nodes of the dataset in clearly
distinguishable groups, as opposed to the spectral embedding (Figure 7.6a). The
heat maps illustrate the density of points from each cluster in the two different
embeddings (p = 2, p = 1.2). We consider ten bins for each direction in order
to measure the density for each cluster. The limits of the colorbar are set in
both cases to the maximum density values obtained by our method, for a clear
comparison.

Upon visual inspection, the pGrass algorithm performs superior to its the tra-
ditional Spec routine in the task of creating sharp cuts of the data. Since the
last stage of both algorithms is to cluster these points according to their rela-
tive distances (see Section 6.2.2 on discretization), the p-spectral coordinates of
Figure 7.6b are expected to lead to clusters of higher quality. This hypothesis
is supported by our numerical results. The quality of the cut achieved by our
algorithm (RCut = 0.0062) is 49.6% better compared to the one obtained by

95 7.2 Experiments with real-world data

(a) Results obtained by the traditional spectral clustering algorithm (Spec).

(b) Results obtained by our proposed p-norm algorithm (pGrass).

Figure 7.6: Embedding results for the worms dataset. Starting from the left, the
points of the dataset are illustrated using the entries of the second and third eigen-
vectors of the L in (a), and of �p for p = 1.1 in (b), as x and y coordinates. The
heat maps that follow depict the density of the points from each of the three clusters.

spectral clustering (RCut = 0.0123). This improvement in terms of graph cut
criteria also leads to a slightly better labelling accuracy for this dataset, with our
method achieving scores of ACC = 0.985, NMI = 0.93 as opposed to the tradi-
tional spectral routine which achieves scores of ACC = 0.981, NMI = 0.92. The
fact that this big improvement in the quality of the cut is not accompanied by an
equivalent increase in the accuracy of the labelling assignment showcases that
for the dataset under question the predefined labels can be accurately retrieved
with both methods.

7.2 Experiments with real-world data

We proceed here with the application of our p-Grassmann spectral clustering
in graphs emerging from real-world applications. In Section 7.2.1 we consider

96 7.2 Experiments with real-world data

the problem of classifying facial images according to their labels and in Sec-
tion 7.2.2 the problem of distinguishing handwritten characters. Both the re-
sults obtained after applying k-means for the clustering of the p-eigenvectors
(pGrass-kmeans), and the results after rotating the eigenvectors to find an opti-
mal partition (pGrass-disc), are presented

7.2.1 Classification of facial image datasets

We consider the following publicly available 3 datasets depicting facial expres-
sions

• Olivetti [124]: A set of 10 different facial images of 40 distinct subjects at
resolution 64⇥ 64 pixels, taken at different times, varying lighting, facial
expressions and facial details.

• Faces95 [172]: A collection of 1440 pictures with resolution 180 ⇥ 200
pixels from 72 individuals that were asked to move while a sequence of 20
images was taken.

• FACES [173]: A set of images with resolution 2835⇥3543 pixels of natural-
istic faces of 171 individuals displaying 6 facial expressions. The database
consists of 2 sets of pictures per person and per facial expression, result-
ing in a total of 2052 images. We downsample the images at 20% of their
initial resolution to decrease the problem size when creating the adjacency
matrix W.

For these datasets the number of nearest neighbors needed for a connected graph
is NN = 6 for Olivetti faces and NN = 10 for both Faces95 and FACES. We sum-
marize our results in Table 7.1. For each dataset we report the mean value and
the standard deviation of NCut, ACC and NMI achieved by the best method, and
the percentage the remaining methods are inferior to that value. Inferiority in
percentage values is defined as I = 100 · � · (eref � ebest)/ebest, where ebest is the
best value, eref the value it is compared against, and � = �1 for minimization
scenarios (NCut) and �= 1 for maximization ones (ACC, NMI). Our algorithmic
variant pGrass-kmeans finds the best NCut result in all three datasets. However,
these minimum cut values do not correspond to a maximization of the labelling
accuracy metrics. Instead, our algorithmic variant pGrass-disc, which discretizes

3The Olivetti dataset is available at https://cam-orl.co.uk/facedatabase.html. The faces95
is available at https://cmp.felk.cvut.cz/spacelib/faces/. The FACES dataset is available after
registration at https://faces.mpdl.mpg.de/imeji/.

https://cam-orl.co.uk/facedatabase.html
https://cmp.felk.cvut.cz/~spacelib/faces/
https://faces.mpdl.mpg.de/imeji/

97 7.2 Experiments with real-world data

Olivetti Faces95 FACES
Method NCut ACC NMI NCut ACC NMI NCut ACC NMI

pGrass - kmeans 3.984±8·10�3 -4.15% -2.28% 2.658±6·10�3 -5.77% -4.24% 29.42±7·10�3 -3.58% -2.41%
pGrass - disc -4.50% 0.716±6·10�3 0.831±2·10�3 -4.50% 0.609±4·10�4 0.758±1·10�3 -6.08% 0.802±4·10�3 0.91±2·10�3

Spec -24.84% -9.19% -5.27% -24.84% -4.23% -0.90% -15.05% -2.50% -1.23%
pSpec -8.04% -7.41% -3.06% -8.04% -6.86% -6.02% -4.34% -6.73% -2.71%
kCuts -1.41% -6.78% -3.20% -1.41% -10.37% -7.70% -7.67% -13.0% -6.99%
Graclus -23.10% -6.36% -2.25% -23.11% -9.25% -2.38% -9.98% -3.70% -2.56%

Table 7.1: Clustering results for the facial image datasets of subsection 7.2.1.
Both variants of our algorithm, pGrass-kmeans and pGrass-disc are considered. We
report in bold the mean results of the best method, and their standard deviation,
and the percentage the remaining methods are inferior to that value.

the eigenvectors of the normalized graph p-Laplacian �(n)p with the orthonormal
transformation described in [156], achieves the highest ACC and NMI values in
all cases. Similarly to the numerical experiments on artificial datasets, no signif-
icant deviations (< 1%) from the mean reported values are observed for pGrass.

7.2.2 Classification of handwritten characters

For the problem of classifying handwritten characters we consider the Omniglot
database [174].4 It consists of 1623 different handwritten characters from 50 al-
phabets. Each of the 1623 characters was drawn online via Amazon’s Mechanical
Turk by 20 different people, with each drawing having dimensions of 105⇥ 105
pixels. For each of these 50 alphabets we consider the problem of grouping the
symbols in their respective classes. The number of nearest neighbors in the cre-
ation of the adjacency matrix is set to NN = 10 for all cases.

We present the percentage of times a method achieved the best and the strictly
best solution in Figure 7.7. In Figure 7.7a we see that our variant pGrass-kmeans
obtains the best NCut values in 80% of the cases, with the remaining methods
pGrass-disc, Spec, pSpec, kCuts and Graclus in 2%, 0%, 0%, 2%, and 16% re-
spectively. There are no ties in the NCut results, thus best and strictly best per-
centages are identical. In terms of ACC, illustrated in Figure 7.7b, our variant
pGrass-disc find the best solution in 72% of the cases, and the strictly best in
56%. The remaining methods pGrass-kmeans, Spec, pSpec, kCuts, Graclus find
the best-strictly best solution in 12%�10%, 20%�8%, 0%�0%, 8.0%�4.0% and
6.0%�6.0% of the cases respectively. Finally, the NMI results of Figure 7.7c indi-
cate that the pGrass-disc variant finds the best solution in 74% of the cases, with
the remaining methods pGrass-kmeans, Spec, pSpec, kCuts, Graclus in 2%, 6%,

4The Omniglot database is available at https://github.com/brendenlake/omniglot.

https://github.com/brendenlake/omniglot

98 7.2 Experiments with real-world data

Best Strictly Best
pG

ra
ss

-k
m

ea
ns

pG
ra

ss
-d

isc
Sp

ec
pS

pe
c

kC
ut

s
Gr

ac
lu

s

0

30

60

90

Pe
rc

en
ta

ge
%

(a) NCut

pG
ra

ss
-k

m
ea

ns
pG

ra
ss

-d
isc

Sp
ec

pS
pe

c
kC

ut
s

Gr
ac

lu
s

0

30

60

90

(b) NCut-based ACC

pG
ra

ss
-k

m
ea

ns
pG

ra
ss

-d
isc

Sp
ec

pS
pe

c
kC

ut
s

Gr
ac

lu
s

0

30

60

90

(c) NCut-based NMI

Figure 7.7: Clustering the Omniglot database of handwritten digits. The red bar
indicated the percentage of times that a method achieved the best solution and the
green bar the percentage of times it achieved the strictly best solution. (a) NCut
values, (b) ACC values based on NCut, (c) NMI values based on NCut.

0%, 4%, and 14% respectively. Similarly to the NCut results all NMI solutions
are unique, thus best and strictly best percentages are identical. The numerical
values of the results for the Omniglot database are summarized in Table B.2 in
Appendix B.

7.2.3 Discussion of real-world results

All real-world numerical experiments presented above demonstrate that clus-
tering with the pGrass algorithm leads to either obtaining the best (minimum)
graph cut values, or the best (maximum) labelling accuracy metrics. In particular,
the pGrass-kmeans variant, that discretizes the resulting p-eigenvectors from the
Grassmannian optimization problem (6.2.5) with the k-means algorithm, show-
cases superior results in terms of the balanced graph cut metric NCut (5.1.8).
This variant (pGrass-kmeans) attains the minimum NCut value from all the meth-
ods under consideration in all the facial expression datasets of Section 7.2.1,
and the minimum NCut value in 80% of the total 50 handwritten datasets of
Section 7.2.2. All these solutions were unique, i.e., none of the external graph
clustering methods under consideration reported the same cut. However, as re-
ported in multiple related works [23, 146, 149], the minimization of balanced

99 7.2 Experiments with real-world data

graph cut metrics does not necessarily lead to a increase in the accuracy of the
labelling assignment for real-world data. The creation of the adjacency matrix
plays a vital role in this discrepancy, and is an active field of research [12, 13].
We demonstrate that for widely used adjacency matrices, employing a different
technique for the discretization of the p-eigenvectors (pGrass-disc) leads to fa-
vorable labelling accuracy assignments, even if the graph cut values are inferior
than the ones by pGrass-kmeans. Rotating the eigenvectors in order to obtain
discrete partitions has been reported to be particularly successful in maximizing
the clustering accuracy metrics of labelled image data [128, 175], and our nu-
merical experiments further support this observation. The algorithmic variant
pGrass-disc minimizes (6.2.9) as suggested in [156], and results in the maxi-
mum ACC and NMI for all three facial expressions datasets. In the classification
of handwritten digits this variant finds the best ACC in 72%, the strictly best
ACC in 56%, and the best NMI in 74% of the cases, with the NMI solutions being
unique. This showcases that the p-spectral embeddings found by (6.2.5) can lead
to the minimization of the balanced graph cut metric (pGrass-kmeans), which is
the primary objective of graph partitioning applications, or to the maximization
of the labelling assignment accuracy (pGrass-disc), which is the goal in classifi-
cation problems.

Chapter 8

Conclusions

This thesis aims to provide a stand-alone synopsis of research conducted by the
author in the field of high dimensional precision and M -matrix estimation, and
in the field of nonlinear spectral clustering.

Initially, a performant and accurate second-order algorithm was developed,
based on the `1 regularized optimization of a quadratic approximation of the
maximum likelihood estimation problem. The proposed method is suitable for
datasets characterized by reduced sparsity and showcases significant performance
gains over the current state-of-the-art. This was achieved by exploiting the pres-
ence of block structure in the underlying computations, namely, in the approx-
imate inversion of the precision matrix, and in the coordinate descent update
that determines the direction of Newton’s method. The block structures utilized
were retrieved by incorporating a high-performance supernodal sparse Cholesky
factorization routine.

Motivated by the effectiveness of this method in problems of very large di-
mensions, we introduced two algorithms for learning M -matrices, that represent
graphs whose nodes are non-negatively correlated random variables. Both pro-
posed algorithms are again based on the graphical lasso problem, and are able to
incorporate prior available information about the latent graphical structure of the
data under question. The first one, SQUIC-fit, is an unconstrained approach that
performs two consecutive precision matrix estimations, and utilizes the positively
correlated variables identified in the first run as graphical bias for the retrieval
of the second precision matrix. Subsequent post-processing of its entries guar-
antees that the resulting matrix is a positive definite M -matrix. The second one,
SQUIC-sqp, is a constrained method that enforces the M -matrix structure during
the optimization procedure. This constrained minimization is achieved by means
of a sequential quadratic programming algorithm, with the corresponding KKT

100

101

system being solved with a preconditioned conjugate gradient method.
This work finally contributes in the area of nonlinear spectral methods with an

algorithm for direct multiway p-spectral clustering, that reformulates the prob-
lem of obtaining multiple eigenvectors of the graph p-Laplacian as an uncon-
strained minimization problem on a Grassmann manifold. Our method reduces
the value of p in a pseudocontinuous manner, and ensures that the best result
with respect to balanced graph cut metrics is retrieved from the various p-levels.
The retrieved p-eigenvectors lead to either superior graph cut values or labelling
accuracy metrics, depending on the method that transforms them into discrete
partitions.

For all introduced methods numerical experiments are conducted on artificial
cases and real-world instances, including biological, medical, and image data.
The consistency of our results, from the synthetic tests to the real-world prob-
lems, highlights the effectiveness of the introduced graph learning and clustering
algorithms and the broad applicability of the presented work.

Appendix A

Derivation of gradient and Hessian for

the pGrass algorithm

In this appendix we show the derivation of the Euclidean gradient gk
m (intro-

duced in (6.2.6)) and the approximate Hessian hk
mn (introduced in (6.2.7)) of

the functional Fp.
The m-th entry of the Euclidean gradient (gk) of Fp with respect to uk is:

gk
m =

@ Fp

@ uk
m

=
@

@ uk
m

nX

i, j=1

Wi j

���uk
i � uk

j

���
p

2kukkp
p

=
@

@ uk
m

A
B

,

gk
m =

@ Fp

@ uk
m

=
@

@ uk
m

nX

i, j=1

wi j

���uk
i � uk

j

���
p

2kukkp
p

where A=
nX

i, j=1

Wi j

���uk
i � uk

j

���
p

and B = 2kukkp
p.

gk
m =

1
B
@ A
@ uk

m

� @ B
@ uk

m

A
B2
=

1
B


@ A
@ uk

m

� @ B
@ uk

m

A
B

�
, and applying the product rule

(A.0.1)

@ A
@ uk

m

=
@

@ uk
m

nX

i, j=1

Wi j

���uk
i � uk

j

���
p
=

nX

i, j=1

Wi j p
���uk

i � uk
j

���
p�1

sign(uk
i � uk

j)
@

@ uk
m

(uk
i � uk

j)

@ A
@ uk

m

= p
nX

i, j=1

Wi j�p(uk
i � uk

j)
@

@ uk
m

(uk
i � uk

j), since �p(x) = |x |p�1sign(x)

(A.0.2)

@

@ uk
m

(uk
i � uk

j) =

8
><
>:

1 if i = m and j 6= m
�1 if j = m and i 6= m
0 else

9
>=
>;

(A.0.3)

102

103

Using (A.0.3) in (A.0.2) we get,

@ A
@ uk

m

= p
nX

j=1

Wmj�p(uk
m � uk

j)� p
nX

i=1

Wim�p(uk
i � uk

m)

@ A
@ uk

m

= p
nX

j=1

î
Wmj�p(uk

m � uk
j)�W jm�p(uk

j � uk
m)
ó

@ A
@ uk

m

= 2p
nX

j=1

Wmj�p(uk
m � uk

j), since �p(�x) = ��p(x) and Wmj =W jm.

(A.0.4)

@ B
@ uk

m

=
@

@ uk
m

2kukkp
p =

@

@ uk
m

2
nX

i=1

|uk
i |p = 2

nX

i=1

p|uk
i |p�1sign(uk

i)
@ uk

i

@ uk
m

@ B
@ uk

m

= 2p�p(uk
m), since �p(x) = |x |p�1sign(x) and

@ uk
i

@ uk
m

=

®
1 if i = m
0 else

´
.

(A.0.5)

Substituting (A.0.4) and (A.0.5) in (A.0.1) we get,

gk
m =

p
kukkp

p

2
4

nX

j=1

Wmj�p(uk
m � uk

j)��p(uk
m)

nX

i, j=1

Wi j

���uk
i � uk

j

���
p

2kukkp
p

3
5 . (A.0.6)

The Euclidean Hessian of Fp with respect to uk is the matrix Hk. Its m-th row
and l-th column entry is

hk
ml =

@ gk
m

@ uk
l

=
@

@ uk
l

p
kukkp

p

2
4

nX

j=1

wmj�p(uk
m � uk

j)��p(uk
m)

nX

i, j=1

wi j

���uk
i � uk

j

���
p

2kukkp
p

3
5 .

(A.0.7)

The Hessian matrix as such (A.0.7) is not sparse and will cause storage prob-
lems. Therefore, we neglect the lower rank updates (refer to [23] for details).
The existing higher rank term can then be simplified, in the same way with the
gradient derivation seen above, to arrive at the approximated Hessian

@ gk
m

@ uk
l

⇡

8
>>><
>>>:

p(p� 1)
kukkp

p

nX

j=1

wmj|uk
m � uk

j |p�2 if m= l,

�p(p� 1)
kukkp

p
wml |uk

m � uk
l |p�2 otherwise.

(A.0.8)

Appendix B

Full list of clustering numerical results

We present in this Appendix the numerical results for the experiments of Sec-
tions 7.1.1 and 7.2.2 on the LFR benchmark datasets and the Omniglot database
of handwritten characters respectively. For the number of times each method
under consideration found the best and the strictly best solutions we refer to Fig-
ures 7.4 and 7.7 for the LFR datasets and the Omniglot cases respectively. The
clustering methods under consideration are listed in Chapter 7.

104

105

Case Measure pGrass Spec pSpec kCuts pMulti Measure pGrass Spec pSpec kCuts Graclus

µ= 0.10
RCut 18.82 18.82 -0.1% 18.82 -13.4% NCut 1.92 1.92 -0.75% 1.92 -37.2%
ACC 1.0 1.0 -0.1% 1.0 -10.6% ACC 1.0 1.0 -0.1% 1.0 -5.3%
NMI 1.0 1.0 -0.2% 1.0 -2.6% NMI 1.0 1.0 -0.16% 1.0 -4.0%

µ= 0.12
RCut 21.6 21.6 21.6 21.6 -17.89% NCut 2.18 2.18 -1.1% 2.18 -19.3%
ACC 1.0 1.0 1.0 1.0 -6.3% ACC 1.0 1.0 -0.2% 1.0 -2.7%
NMI 1.0 1.0 1.0 1.0 -2.4% NMI 1.0 1.0 -0.34% 1.0 -2.0%

µ= 0.14
RCut 29.75 -3.53% -15.3% 29.75 -20.3% NCut 2.92 2.92 2.92 2.92 -36.2%
ACC 1.0 -8.2% -10.4% 1.0 -7.2% ACC 1.0 1.0 1.0 1.0 -8.5%
NMI 1.0 -2.4% -4.6% 1.0 -4.7% NMI 1.0 1.0 1.0 1.0 -5.4%

µ= 0.16
RCut 31.37 -4.6% 31.37 31.37 -3.0% NCut 3.17 3.17 3.17 3.17 -13.5%
ACC 1.0 -2.8% 1.0 1.0 -3.1% ACC 1.0 1.0 1.0 1.0 -2.6%
NMI 1.0 -1.7% 1.0 1.0 -1.6% NMI 1.0 1.0 1.0 1.0 -1.8%

µ= 0.18
RCut 30.56 -0.15% -1.82% 30.56 30.56 NCut 3.21 -0.1% 3.21 3.21 -11.8%
ACC 1.0 -0.1% -0.7% 1.0 1.0 ACC 1.0 -0.1% 1.0 1.0 -2.5%
NMI 1.0 -0.2% -1.1% 1.0 1.0 NMI 1.0 -0.19% 1.0 1.0 -1.6%

µ= 0.20
RCut 34.45 -4.1% -2.77% 34.45 -19.0% NCut 3.65 3.65 -1.53% 3.65 -11.1%
ACC -0.1% -3.2% -12.0% 1.0 -24.1% ACC 1.0 -0.1% -0.5% 1.0 -2.4%
NMI 1.0 -2.1% -5.2% 1.0 -17.0% NMI 1.0 -0.19% -0.9% 1.0 -2.4%

µ= 0.22
RCut 39.01 -5.0% -4.0% -0.34% -1.00% NCut 3.96 3.96 3.96 3.96 3.96
ACC 1.0 -15.0% -11.0% 1.0 -7.2% ACC 1.0 -0.3% 1.0 1.0 1.0
NMI 1.0 -7.2% -6.7% -0.5% -3.3% NMI 1.0 -0.2% -0.9% 1.0 1.0

µ= 0.24
RCut 49.76 -7.3% -7.2% -1.4% -2.3% NCut 5.02 5.02 5.02 5.02 -8.8%
ACC -13.8% 0.88 -12.8% -10.1% -39.0% ACC 1.0 -0.3% 1.0 1.0 -3.3%
NMI -0.46% 0.94 -7.3% -3.8% -16.7% NMI 1.0 -0.19% -0.9% -0.2% -1.9%

µ= 0.26
RCut 41.95 -4.5% -1.2% -1.9% -11.4% NCut 4.4 -0.14% -41.0% 4.4 4.4
ACC -1.9% -5.2% -13.7% 0.87 -48.0% ACC 1.0 -0.1% -9.2% 1.0 1.0
NMI -1.0% -7.3% -8.7% 0.94 -32.5% NMI 1.0 -0.17% -14.7% -0.18% 1.0

µ= 0.28
RCut 53.38 -8.4% -5.2% -4.4% -1.0% NCut 5.59 -0.1% -0.4% 5.59 -6.6%
ACC 0.83 -44.4% -19.6% 0.83 -152.7% ACC 1.0 -0.2% -0.4% 1.0 -3.1%
NMI -0.3% -23.3% -6.3% 0.894 -78.3% NMI 1.0 -0.5% -0.7% -0.18% -1.8%

µ= 0.30
RCut -1.74% -10.5% -10.9% -4.9% 56.0 NCut 6.00 -0.14% -1.96% 6.00 6.00
ACC 0.77 -26.4% -68.2% 0.77 -67.1% ACC 1.0 -0.3% -1.9% 1.0 1.0
NMI 0.866 -18.3% -37.8% -0.2% -34.2% NMI 1.0 -0.52% -3.0% -0.74% 1.0

µ= 0.32
RCut 43.73 -13.5% -9.4% -4.9% -0.35% NCut 5.40 -0.48% -1.0% -0.04% -11.8%
ACC 0.51 -3.7% -17.5% 0.51 -126.1% ACC 0.998 -0.8% -2.0% -0.2% -6.9%
NMI -1.6% -6.4% 0.67 -0.3% -95.0% NMI 0.996 -1.5% -3.5% -0.34% -4.5%

µ= 0.34
RCut -1.47% -9.7% -14.0% -6.5% 46.24 NCut -0.1% -0.6% -1.4% -0.1% 5.74
ACC -7.9% 0.53 -57.4% -94.9% -247.7% ACC -0.1% -0.8% -1.7% 0.995 0.995
NMI 0.62 -0.7% -4.7% -35.6% -213.9% NMI -0.19% -1.6% -2.9% -0.01% 0.990

µ= 0.36
RCut -1.3% -6.3% -19.6% -4.5% 56.11 NCut -0.04% -1.00% -5.9% 7.216 -0.02%
ACC 0.38 -7.8% -15.4% 0.38 -51.2% ACC -0.6% -2.3% -7.2% 0.998 -0.5%
NMI 0.51 -2.4% -8.0% -1.4% -42.1% NMI -1.1% -3.7% -11.0% 0.996 -0.74%

µ= 0.38
RCut -0.08% -10.3% -14.7% -0.2% 56.25 NCut 7.18 -1.0% -6.8% -0.08% -4.5%
ACC -0.9% 0.34 -54.4% -43.8% -117.5% ACC 0.992 -2.0% -9.0% -0.4% -4.4%
NMI 0.51 -12.6% -36.3% -61.0% -156.0% NMI 0.996 -3.8% -14.2% -0.76% -3.6%

µ= 0.40
RCut 53.45 -10.9% -18.9% -1.9% -1.4505 NCut -0.2% -0.9% -8.1% 7.99 -3.5%
ACC 0.25 -12.8% 0.25 -28.1% -39.0% ACC 0.998 -2.15% -12.2% -0.8% -3.9%
NMI 0.43 -64.2% -58.6% -69.2% -102.0% NMI -1.55% -4.1% -17.1% 0.994% -3.7%

Table B.1: Clustering results for the LFR benchmark datasets with an increasing
noise component µ 2 [0.1,0.4]. The numerical value of the best solutions for each
metric is presented in bold. The percentage signs indicate how much inferior a
solution is to the best solution.

106

Measure Case pGr-A pGr-B Spec pSpec kCuts Graclus Case pGr-A pGr-B Spec pSpec kCuts Graclus
NCut

AngloSaxon
13.63 -2.57% -3.54% -8.95% -2.89% -0.63%

Ojibwe
-1.80% -3.50% -6.10% -12.62% 4.85 -3.68%

ACC -5.04% 0.358 -2.46% -30.83% -14.28% -11.23% -2.65% 0.41 -0.88% -0.88% -8.43% -7.42%
NMI -2.14% 0.477 -1.06% -9.99% -5.16% -5.68% -0.59% 0.46 -1.61% -1.07% -2.51% -3.90%
NCut

Arcadian
15.42 -1.86% -2.12% -6.23% -1.05% -0.22%

Sanskrit
-0.50% -2.42% -2.19% -5.43% -3.30% 0.319%

ACC -2.85% 0.29 -0.10% -8.04% -2.85% -5.02% -1.46% 0.166 0.166 -5.31% -2.96% -6.86%
NMI -4.89% 0.384 -2.32% -16.53% -7.29% -5.20% -1.39% 0.33 -1.33% -9.70% -4.27% -4.66%
NCut

Armenian
23.02 -2.64% -2.83% -4.20% -0.96% -1.12%

Syriac
12.59 -3.00% -4.11% -3.71% -1.70% -3.59%

ACC 0.24 -2.65% -4.88% -10.87% -3.77% -3.18% -8.01% 0.263 -4.28% -17.46% -8.01% -7.04%
NMI -1.08% 0.40 -1.08% -8.18% -4.16% -2.43% -8.10% 0.338 -2.57% -18.41% -10.21% -8.80%
NCut

Balinese
14.31 -3.42% -4.92% -5.79 % -2.14 % -2.59 %

Tifinagh
28.84 -5.21% -7.44% -6.45% -3.83% -3.05%

ACC -4.16% -4.16% -6.85% -8.68 % 0.26 -2.44 % -1.68% 0.279 -0.98% -13.69% -9.24% -2.01%
NMI -4.02% -2.84% -7.09% -8.56% -3.2% 0.33 -4.97% 0.498 -0.97% -9.63% -8.74% -4.42%
NCut

Bengali
26.31 -1.88% -2.34% -6.52% -1.20% -0.75%

Angelic
8.90 -4.99% -6.97% -6.89% -1.61% -5.15%

ACC -8.57% 0.223 -4.16% -19.25% -2.06% -10.29% -11.90% -3.30% 0.47 -20.51% -12.57% -14.63%
NMI -4.41% -0.75% -1.36% -9.46% 0.40 -2.73% -5.86% 0.538 -0.73% -18.12% -9.14% -6.55%
NCut

Blackfoot
4.39 -2.87% -7.29% -5.78% -0.81% -10.92%

Atemayar
-1.09% -3.08% -5.85% -7.18% -2.44% 13.26

ACC -7.93% -4.82% -6.86% -17.22% -4.82% 0.389 -7.30% 0.26 -2.44% -15.56% -9.01% -18.61%
NMI -8.24% -4.12% -8.92% -9.02% -0.27% 0.452 -4.62% 0.351 -0.54% -12.14% -6.36% -8.67%
NCut

Braille
13.76 -4.83% -6.82% -4.90% -1.92% -1.99%

Atlantean
16.49 -4.76% -5.54% -4.86% -1.16% -0.39%

ACC -16.69% 0.298 -2.12% -27.24% -13.28% -17.61% -12.05% 0.34 0.34 -18.81% -14.92% -5.35%
NMI -11.61% 0.387 -1.76% -18.21% -12.71% -11.90% -8.53% -0.79% -3.12% -16.91% -11.42% 0.422
NCut

Burmese
19.40 -3.76% -3.89% -5.73% -1.48% -1.30%

Aurek-Besh
11.66 -4.92% -6.80% -5.25% -1.82% -2.72%

ACC -5.39% 0.23 -1.32% -15.45% 0.23 -3.96% -3.21% 0.37 -3.21% -21.53% -1.04% -8.46%
NMI -3.50% -0.43% -0.89% -9.92% -4.40% 0.372 -2.34% 0.47 -1.67% -9.71% -2.05% -5.24%
NCut

Cyrillic
16.79 -3.28% -4.25% -8.08% -0.80% -2.69%

Avesta
15.25 -3.67% -4.53% -6.37% -2.40% -1.86%

ACC -0.45% -0.18% 0.334 -19.44% -0.90% -9.38% -6.11% 0.27 -0.72% -21.94% -1.44% -7.74%
NMI -2.91 % 0.467 -0.65% -15.15% -2.64% -4.19% -6.36% 0.366 -2.00% -20.24% -8.14% -5.83%
NCut

Aramaic
10.37 -4.34% -4.35% -8.21% -2.58% -3.40%

Ge-ez
-0.48% -3.36% -4.02% -3.57% -1.20% 15.11%

ACC -1.32% 0.352 -4.73% -13.98% -2.65% -3.34% -10.00% 0.275 0.275 -16.28% -17.22% -15.30%
NMI -0.28% 0.427 -0.99% -16.10% -0.12% -2.64% -4.42% -5.41% 0.355 -6.29% -6.55% -0.82%
NCut

Futurama
15.97 -5.47% -6.89% -3.90% -0.83% -1.46%

Glagolitic
27.84 -3.96% -5.82% -5.11% -1.52% -0.03%

ACC -6.53% 0.344 -1.12% -13.30% -14.01% -15.46% -8.02% 0.3 -1.12% -23.97% -5.10% -10.25%
NMI -9.48% 0.446 -0.59% -8.21% -15.66% -9.35% -5.13% 0.45 -1.21% -19.61% -4.14% -2.25%
NCut

Georgian
18.70 -1.63% -4.70% -5.19% -2.98% -2.38%

Gurmukhi
24.96 -2.17% -3.62% -5.87% -1.25% -2.79%

ACC -2.89% 0.313 -1.62% -11.08% -8.21% -3.29% -1.16% -5.52% -8.15% -5.52% -5.52% 0.19
NMI -1.92% 0.488 -1.66% -4.82% -5.23% -1.92% -2.27% -1.01% -1.61% -3.98% -1.24% 0.36
NCut

Grantha
22.37 -2.06% -2.52% -5.40% -3.20% -0.89%

Kannada
-0.26% -3.01% -3.68% -5.51% -1.21% 24.32

ACC -0.35% -0.50% 0.341 -9.72% -3.54% -6.91% -2.96% 0.21 -5.47% -4.17% -9.44% -2.96%
NMI -0.14% -2.05% 0.498 -4.71% -3.99% -2.62% -2.35% 0.37 -0.75% -4.23% -5.61% -0.70%
NCut

Greek
13.19 -3.60% -6.96% -6.47% -1.15% -1.12%

Keble
8.91 -2.60% -4.86% -6.40% -0.26% -3.59%

ACC 0.329 -2.75% -5.34% -22.52% -11.29% -8.22% -2.57% 0.30 0.00% -10.47% -3.26% -2.57%
NMI 0.410 -2.91% -2.04% -13.63% -6.00% -2.60% -3.40% -0.30% -1.36% -10.41% -4.77% 0.402
NCut

Gujarati
29.86 -2.62% -3.44% -4.83% -0.86% -0.33%

Malayalam
29.38 -1.71% -3.49% -4.66% -0.95% -0.39%

ACC -1.54% 0.21 -3.57% -14.70% -4.14% -10.33% -5.58% 0.22 -1.98% -10.65% -0.50% -6.14%
NMI -3.08% 0.41 -1.13% -8.74% -4.20% -3.69% -7.34% 0.41 -1.72% -13.90% -6.25% -9.88%
NCut

Hebrew
11.73 -4.09% -4.29% -4.49% -1.67% -0.31%

Manipuri
-0.16% -2.07% -4.92% -4.88% -1.08% 24.08

ACC -9.37% 0.248 -5.16% -16.39% -3.20% -4.19% -7.23% 0.22 -1.69% -16.31% -2.30% -7.23%
NMI -4.18% 0.333 -0.33% -13.11% -4.08% -6.20% -2.02% 0.369 -0.22% -10.42% -0.55% -5.40%
NCut

Hiragana
-0.70% -3.96% -4.21% -7.52% -2.01% 33.68

Mongolian
17.49 -2.31% -4.18% -5.07% -1.33% -2.51%

ACC -6.25% -8.30% -2.36% -13.62% 0.268 -9.58% -7.41% 0.27 -1.91% -20.30% -11.92% -7.41%
NMI -6.40% 0.452 -1.16% -9.18% -3.93% -5.90% -4.27% 0.39 -2.39% -12.58% -8.48% -5.03%
NCut

Inuktitut
-4.73% 4.55 -10.97% -9.34% -5.28% -7.74%

Slavonic
29.29 -3.53% -4.53% -4.10% -1.22% -1.14%

ACC -6.44% 0.515 -1.86% -9.26% -0.60% -22.21% -5.94% 0.24 -2.48% -20.34% -5.94% -9.03%
NMI -2.57% 0.582 -1.25% -7.59% -2.37% -6.95% -6.85% 0.41 -1.72% -17.94% -6.76% -5.30%
NCut

Katakana
26.18 -3.49% -4.70% -6.39% -1.32% -1.12%

Oriya
28.63 -2.68% -3.06% -4.56% -0.79% -0.55%

ACC -6.43% 0.246 -4.49% -7.40% -10.47% -9.45% -6.89% 0.203 -1.09% -5.06% -3.88% -10.01%
NMI -5.29% 0.435 -1.63% -10.72% -5.32% -3.54% -4.33% 0.37 -0.46% -5.36% -2.95% -2.61%
NCut

Korean
-0.04% -2.26% -3.20% -7.17% -1.76 % 22.47

Sylhetti
14.43 -2.10% -4.00% -5.58% -0.72% -1.05%

ACC 0.23 -3.31% -5.65% -16.90% -2.19% -1.08% -3.68% -6.67% -0.91% -2.77% -14.29% 0.2%
NMI -1.51% 0.40 -3.01% -11.13% -3.99% -1.97% -5.43% 0.293 -1.52% -8.19% -9.36% -0.93%
NCut

Magi
11.91 -3.66% -4.79% -3.54% -0.34% -1.32%

Syriac-Serto
12.02 -5.93% -6.23% -4.66% -3.97% -3.99%

ACC -9.09% -0.76% 0.33 -13.79 % -3.94% -13.79% -5.97% 0.31 0.308 -8.39% -14.50% -3.66%
NMI -3.32% -1.00% -2.36% -14.31% 0.373 -2.98% -2.58% -2.99% 0.41 -14.43% -16.87% -5.46%
NCut

Latin
12.76 -4.37% -4.42% -5.08% -2.15% -1.46%

Tengwar
13.7 -2.43% -4.42% -7.76% -1.25% -2.28%

ACC -6.35% 0.296 -1.44% -7.82% -10.92% -7.82% -7.91% 0.30 -4.17% -7.14% -4.17% -7.91%
NMI -4.58% -2.18% -1.26% -9.13% -7.29 % 0.426 -6.39% 0.37 -0.73% -5.70% -2.33% -0.05%
NCut

Malay
21.85 -3.43% -4.72% -7.05% -1.94% -2.88 %

Tibetan
25.38 -2.76% -2.76% -5.59% -1.06% -0.30%

ACC 0.213 0.213 -10.27% -10.27% 0.213 -2.99% 0.24 -3.11% -3.65% -21.49% -5.32% -6.46%
NMI -4.27% 0.395 -0.89% -8.39% -2.86% -1.70% -0.67% 0.41 -0.77% -14.48% -4.88% -6.54%
NCut

Mkhedruli
24.10 -3.21% -3.73% -4.96% -1.38% -2.40%

ULOG
14.29 -3.49% -4.29% -2.41% -1.37% -2.71%

ACC -13.96% 0.25 -0.60% -16.49% -16.49% -6.30% -3.87% 0.26 -0.74% -16.50% -3.87% -11.66%
NMI -8.05% 0.42 -1.70% -15.27% -9.57% -5.59% -5.56% 0.36 -1.06% -13.17% -5.13% -10.47%
NCut

N-Ko
14.91 -3.26% -4.41% -6.80% -1.29% -3.09%

Tagalog
-0.10% -2.98% -5.69% -7.39% -1.11% 8.71

ACC -2.45% 0.318 -0.47% -9.38% -1.95% -7.14% 0.37 -7.57% -2.42% -17.44% -8.47% -7.57%
NMI -1.24% 0.464 -0.43% -8.78% -2.67% -1.51% -1.37% 0.41 -0.39% -6.96% -3.17% -0.69%

Table B.2: Clustering results for the Omniglot database. The numerical value of
the best solutions for each metric is presented in bold. The percentage signs indicate
how much inferior a solution is to the best solution. pGr-A and pGr-B refer to the
algorithmic variants pGrass-kmeans and pGrass-disc, respectively.

Bibliography

[1] S. L. Lauritzen. Graphical models. Number 17 in Oxford Statistical Science
Series. Clarendon Press, 1996.

[2] H. Rue and L. Held. Gaussian Markov Random Fields: Theory And Appli-
cations (Monographs on Statistics and Applied Probability). Chapman &
Hall/CRC, 2005.

[3] A. P. Dempster. Covariance Selection. Biometrics, 28(1):157, mar 1972.
doi: 10.2307/2528966.

[4] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance es-
timation with the graphical lasso. Biostatistics, 9(3):432–441, 12 2007.
doi: 10.1093/biostatistics/kxm045.

[5] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. K. Ravikumar. Sparse In-
verse Covariance Matrix Estimation Using Quadratic Approximation. In
J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 24,
pages 2330–2338. Curran Associates, Inc., 2011.

[6] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. K. Ravikumar. Quic:
Quadratic approximation for sparse inverse covariance estimation. Jour-
nal of Machine Learning Research, 15(83):2911–2947, 2014.

[7] M. Bollhöfer, A. Eftekhari, S. Scheidegger, and O. Schenk. Large-scale
Sparse Inverse Covariance Matrix Estimation. SIAM Journal on Scientific
Computing, 41(1):A380–A401, 2019. doi: 10.1137/17M1147615.

[8] A. Eftekhari, M. Bollhöfer, and O. Schenk. Distributed Memory Sparse
Inverse Covariance Matrix Estimation on High-Performance Computing
Architectures. In ACM/IEEE International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis (SC18), 2018. doi:
10.1109/SC.2018.00023.

107

108 Bibliography

[9] A. Eftekhari, D. Pasadakis, M. Bollhöfer, S. Scheidegger, and O. Schenk.
Block-enhanced precision matrix estimation for large-scale datasets. Jour-
nal of Computational Science, 53:101389, 2021. doi: 10.1016/j.jocs.2021.
101389.

[10] E. Bølviken. Probability inequalities for the multivariate normal with non-
negative partial correlations. Scandinavian Journal of Statistics, 9(1):49–
58, 1982.

[11] S. Karlin and Y. Rinott. M-matrices as covariance matrices of multinormal
distributions. Linear Algebra and its Applications, 52-53:419–438, 1983.
doi: 10.1016/0024-3795(83)80027-5.

[12] L. Stanković, D. Mandic, M. Daković, M. Brajović, B. Scalzo, S. Li, and
A. G. Constantinides. Data analytics on graphs part iii: Machine learn-
ing on graphs, from graph topology to applications. Foundations and
Trends® in Machine Learning, 13(4):332–530, 2020. doi: 10.1561/
2200000078-3.

[13] F. Xia, K. Sun, S. Yu, A. Aziz, L. Wan, S. Pan, and H. Liu. Graph learning:
A survey. IEEE Transactions on Artificial Intelligence, 2(2):109–127, 2021.
doi: 10.1109/TAI.2021.3076021.

[14] D. Pasadakis, M. Bollhöfer, and O. Schenk. Sparse quadratic approxima-
tion for graph learning. April 2022. doi: 10.36227/techrxiv.19635990.v1.

[15] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical
Journal, 23(2):298–305, 1973.

[16] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications,
11(3):84521, May 1990. doi: 10.1137/0611030.

[17] U. Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17
(4):395–416, December 2007. doi: 10.1007/s11222-007-9033-z.

[18] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis
and an algorithm. In Proceedings of the 14th International Conference on
Neural Information Processing Systems: Natural and Synthetic, NIPS’01,
page 849–856, Cambridge, MA, USA, 2001. MIT Press. doi: 10.5555/
2980539.2980649.

[19] C. E. Bichot and P. Siarry. Graph Partitioning. ISTE. Wiley, 2013.

109 Bibliography

[20] S. Amghibech. Bounds for the largest p-Laplacian eigenvalue for graphs.
Discrete Mathematics, 306(21):2762 – 2771, 2006. doi: 10.1016/j.disc.
2006.05.012.

[21] S. T. Wierzchoń and M. A. Kłopotek. Spectral Clustering, pages 181–
259. Springer International Publishing, Cham, 2018. doi: 10.1007/
978-3-319-69308-8_5.

[22] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian, pages
195–199. Princeton Univ. Press, Princeton, 1969.

[23] T. Bühler and M. Hein. Spectral clustering based on the graph p-Laplacian.
In Proceedings of the 26th Annual International Conference on Machine
Learning, ICML ’09, pages 81–88, New York, NY, USA, 2009. ACM. doi:
10.1145/1553374.1553385.

[24] X. Bresson, T. Laurent, D. Uminsky, and J. von Brecht. Multiclass total vari-
ation clustering. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc., 2013.

[25] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with
orthogonality constraints. SIAM Journal on Matrix Analysis and Applica-
tions, 20(2):303–353, April 1999. doi: 10.1137/S0895479895290954.

[26] D. Pasadakis, C. L. Alappat, O. Schenk, and G. Wellein. Multiway p-
spectral graph cuts on Grassmann manifolds. Machine Learning, 111(2):
791–829, Feb 2022. doi: 10.1007/s10994-021-06108-1.

[27] T. Simpson, D. Pasadakis, D. Kourounis, K. Fujita, T. Yamaguchi,
T. Ichimura, and O. Schenk. Balanced graph partition refinement using the
graph p-Laplacian. In Proceedings of the Platform for Advanced Scientific
Computing Conference, PASC ’18, New York, NY, USA, 2018. Association
for Computing Machinery. doi: 10.1145/3218176.3218232.

[28] A. Eftekhari, L. Gaedke-Merzhaeuser, D. Pasadakis, M. Bollhöfer, S. Schei-
degger, and O. Schenk. Large-scale precision matrix estimation with
SQUIC. Available at SSRN, 2021. doi: 10.2139/ssrn.3904001.

[29] A. Berge, A. C. Jensen, and A. H. Schistad Solberg. Sparse inverse co-
variance estimates for hyperspectral image classification. IEEE Transac-
tions on Geoscience and Remote Sensing, 45(5):1399–1407, 2007. doi:
10.1109/TGRS.2007.892598.

110 Bibliography

[30] S. de Vos, S. Patten, E. C. Wit, E. H. Bos, K. J. Wardenaar, and P. de Jonge.
Subtyping psychological distress in the population: a semi-parametric net-
work approach. Epidemiology and Psychiatric Sciences, 29:e36, 2020. doi:
10.1017/S204579601900026X.

[31] G. Fatima, P. Babu, and P. Stoica. Covariance matrix estimation under
positivity constraints with application to portfolio selection. IEEE Signal
Processing Letters, 29:2487–2491, 2022. doi: 10.1109/lsp.2022.3226117.

[32] Y. Ni, V. Baladandayuthapani, M. Vannucci, and F. C. Stingo. Bayesian
graphical models for modern biological applications. Statistical Meth-
ods & Applications, 31(2):197–225, May 2021. doi: 10.1007/
s10260-021-00572-8.

[33] T. Hastie, R. Tibshirani, and M. Wainwright. Statistical Learning with Spar-
sity: The Lasso and Generalizations. Chapman & Hall/CRC, 2015. ISBN
1498712169.

[34] M. Maathuis, M. Drton, S. Lauritzen, and M. Wainwright. Handbook
of Graphical Models. CRC Press, Inc., USA, 1st edition, 2018. ISBN
1498788629.

[35] M. Wainwright. Graphical Models and Message-Passing Algorithms: Some
Introductory Lectures, pages 51–108. Springer International Publishing,
Cham, 2015. doi: 10.1007/978-3-319-16967-5_3.

[36] P. Clifford. Markov random fields in statistics. In G. Grimmett and
D. Welsh, editors, Disorder in Physical Systems: A Volume in Honour of
John M. Hammersley, pages 19–32. Oxford University Press, Oxford, 1990.

[37] L. Le Cam. The central limit theorem around 1935. Statistical science,
pages 78–91, 1986.

[38] H. K. Kesavan. Jaynes’ maximum entropy principle, pages 1779–1782.
Springer US, Boston, MA, 2009. doi: 10.1007/978-0-387-74759-0_312.

[39] K. B. Petersen and M. S. Pedersen. The matrix cookbook, nov 2012. URL
http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html.

[40] D. Bertsimas, J. Lamperski, and J. Pauphilet. Certifiably optimal sparse
inverse covariance estimation. Mathematical Programming, 184(1–2):
491–530, nov 2020. doi: 10.1007/s10107-019-01419-7.

http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html

111 Bibliography

[41] C. Lam and J. Fan. Sparsistency and rates of convergence in large co-
variance matrix estimation. The Annals of Statistics, 37(6B):4254 – 4278,
2009. doi: 10.1214/09-AOS720.

[42] M. Yuan and Y. Lin. Model selection and estimation in the Gaussian graph-
ical model. Biometrika, 94(1):19–35, 03 2007. ISSN 0006-3444. doi:
10.1093/biomet/asm018.

[43] Z. Wu, C. Wang, and W. Liu. A unified precision matrix estimation
framework via sparse column-wise inverse operator under weak sparsity.
Annals of the Institute of Statistical Mathematics, December 2022. doi:
10.1007/s10463-022-00856-0.

[44] J. Fan, Y. Fan, and J. Lv. High dimensional covariance matrix estimation
using a factor model. Journal of Econometrics, 147(1):186–197, Novem-
ber 2008.

[45] A. Das, A. L Sampson, C. Lainscsek, L. Muller, W. Lin, J. C. Doyle, S. S.
Cash, E. Halgren, and T. J. Sejnowski. Interpretation of the precision ma-
trix and its application in estimating sparse brain connectivity during sleep
spindles from human electrocorticography recordings. Neural Computa-
tion, 29(3):603–642, March 2017.

[46] A. Mohammadi and E. C. Wit. Bayesian Structure Learning in Sparse
Gaussian Graphical Models. Bayesian Analysis, 10(1):109 – 138, 2015.
doi: 10.1214/14-BA889.

[47] M. Titsias. Variational learning of inducing variables in sparse Gaussian
processes. In D. van Dyk and M. Welling, editors, Proceedings of the Twelth
International Conference on Artificial Intelligence and Statistics, volume 5 of
Proceedings of Machine Learning Research, pages 567–574, Hilton Clearwa-
ter Beach Resort, Clearwater Beach, Florida USA, 16–18 Apr 2009. PMLR.

[48] M. Lemercier, C. Salvi, T. Cass, E. V. Bonilla, T. Damoulas, and T. J.
Lyons. SigGPDE: Scaling sparse Gaussian processes on sequential data.
In M. Meila and T. Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 6233–6242. PMLR, 18–24 Jul 2021.

[49] O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection through
sparse maximum likelihood estimation for multivariate Gaussian or binary
data. The Journal of Machine Learning Research, 9:485–516, 2008.

112 Bibliography

[50] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004. doi: 10.1017/CBO9780511804441.

[51] D. M. Witten, J. H. Friedman, and N. Simon. New insights and faster com-
putations for the graphical lasso. Journal of Computational and Graphical
Statistics, 20(4):892–900, 2011. doi: 10.1198/jcgs.2011.11051a.

[52] R. Mazumder and T. Hastie. The graphical lasso: New insights and al-
ternatives. Electronic Journal of Statistics, 6:2125 – 2149, 2012. doi:
10.1214/12-EJS740.

[53] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical
Sciences. Society for Industrial and Applied Mathematics, 1994. doi: 10.
1137/1.9781611971262.

[54] S. Karlin and Y. Rinott. Classes of orderings of measures and re-
lated correlation inequalities. I. Multivariate totally positive distributions.
Journal of Multivariate Analysis, 10(4):467–498, 1980. doi: 10.1016/
0047-259X(80)90065-2.

[55] J. A. Soloff, A. Guntuboyina, and M. I. Jordan. Covariance estimation
with nonnegative partial correlations, 2020. URL https://arxiv.org/
abs/2007.15252.

[56] M. Slawski and M. Hein. Estimation of positive definite M-matrices and
structure learning for attractive Gaussian Markov random fields. Linear
Algebra and its Applications, 473:145 – 179, 2015. doi: 10.1016/j.laa.
2014.04.020. Special issue on Statistics.

[57] S. Lauritzen, C. Uhler, and P. Zwiernik. Maximum likelihood estimation
in Gaussian models under total positivity. The Annals of Statistics, 47(4):
1835 – 1863, 2019. doi: 10.1214/17-AOS1668.

[58] S. Fallat, S. Lauritzen, K. Sadeghi, C. Uhler, N. Wermuth, and P. Zwiernik.
Total positivity in Markov structures. The Annals of Statistics, 45(3):1152
– 1184, 2017. doi: 10.1214/16-AOS1478.

[59] S. Kumar, J. Ying, J. V. de M. Cardoso, and D. P. Palomar. A unified frame-
work for structured graph learning via spectral constraints. Journal of
Machine Learning Research, 21(22):1–60, 2020.

[60] F. R. K. Chung. Spectral Graph Theory, volume 92. American Mathematical
Society, 1997. doi: 10.1090/cbms/092.

https://arxiv.org/abs/2007.15252
https://arxiv.org/abs/2007.15252

113 Bibliography

[61] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.
doi: 10.1109/34.868688.

[62] F. Tudisco and M. Hein. A nodal domain theorem and a higher-order
Cheeger inequality for the graph p-Laplacian. Journal of Spectral Theory,
March 2017. doi: 10.4171/JST/216.

[63] L. Li and K.-C. Toh. An inexact interior point method for `1-regularized
sparse covariance selection. Mathematical Programming Computation, 2
(3):291–315, Dec 2010. doi: 10.1007/s12532-010-0020-6.

[64] F. Oztoprak, J. Nocedal, S. Rennie, and P. A. Olsen. Newton-like meth-
ods for sparse inverse covariance estimation. In F. Pereira, C.J. Burges,
L. Bottou, and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 25. Curran Associates, Inc., 2012.

[65] E. Treister and J. S. Turek. A block-coordinate descent approach for large-
scale sparse inverse covariance estimation. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

[66] C.-J. Hsieh, M. A. Sustik, I. S Dhillon, P. K. Ravikumar, and R. Poldrack.
BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Vari-
ables. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26,
pages 3165–3173. Curran Associates, Inc., 2013.

[67] S. Oh, O. Dalal, K. Khare, and B. Rajaratnam. Optimization methods for
sparse pseudo-likelihood graphical model selection. In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems, volume 27. Curran Asso-
ciates, Inc., 2014.

[68] P. Koanantakool, A. Ali, A. Azad, A. Buluc, D. Morozov, L. Oliker,
K. Yelick, and S.-Y. Oh. Communication-Avoiding Optimization Methods
for Distributed Massive-Scale Sparse Inverse Covariance Estimation. In
A. Storkey and F. Perez-Cruz, editors, Proceedings of the Twenty-First In-
ternational Conference on Artificial Intelligence and Statistics, volume 84 of
Proceedings of Machine Learning Research, pages 1376–1386, Playa Blanca,
Lanzarote, Canary Islands, 09–11 Apr 2018. PMLR.

114 Bibliography

[69] A. Anandkumar, V. Y. F. Tan, F. Huang, and A. S. Willsky. High-dimensional
Gaussian graphical model selection: Walk summability and local separa-
tion criterion. Journal of Machine Learning Research, 13(76):2293–2337,
2012.

[70] N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable
selection with the Lasso. The Annals of Statistics, 34(3):1436 – 1462,
2006. doi: 10.1214/009053606000000281.

[71] C. Wang and B. Jiang. An efficient ADMM algorithm for high dimen-
sional precision matrix estimation via penalized quadratic loss. Computa-
tional Statistics & Data Analysis, 142(C), 2020. doi: 10.1016/j.csda.2019.
10681.

[72] W. Liu and X. Luo. Fast and adaptive sparse precision matrix estimation in
high dimensions. Journal of Multivariate Analysis, 135:153 – 162, 2015.
doi: 10.1016/j.jmva.2014.11.005.

[73] T. Cai, W. Liu, and X. Luo. A constrained `1 minimization approach to
sparse precision matrix estimation. Journal of the American Statistical As-
sociation, 106(494):594–607, 2011. doi: 10.1198/jasa.2011.tm10155.

[74] T. Tony Cai, W. Liu, and H. H. Zhou. Estimating sparse precision ma-
trix: Optimal rates of convergence and adaptive estimation. The Annals
of Statistics, 44(2):455 – 488, 2016. doi: 10.1214/13-AOS1171.

[75] H. Pang, H. L., and R. Vanderbei. The FASTCLIME package for linear
programming and large-scale precision matrix estimation in R. Journal of
Machine Learning Research, 15(14):489–493, 2014.

[76] R. Zhang, S. Fattahi, and S. Sojoudi. Large-scale sparse inverse covari-
ance estimation via thresholding and max-det matrix completion. In J. Dy
and A. Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Re-
search, pages 5766–5775, Stockholmsmässan, Stockholm Sweden, 10–15
Jul 2018. PMLR.

[77] Y. Wang, U. Roy, and C. Uhler. Learning high-dimensional Gaussian graph-
ical models under total positivity without adjustment of tuning parame-
ters. In S. Chiappa and R. Calandra, editors, The 23rd International Con-
ference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August

115 Bibliography

2020, Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine
Learning Research, pages 2698–2708. PMLR, 2020.

[78] J. K. Tugnait. Sparse graph learning under Laplacian-related constraints.
IEEE Access, 9:151067–151079, 2021. doi: 10.1109/ACCESS.2021.
3126675.

[79] B. M. Lake and J. B. Tenenbaum. Discovering structure by learning sparse
graphs. In Proceedings of the 33rd Annual Cognitive Science Conference,
2010.

[80] H. E. Egilmez, E. Pavez, and A. Ortega. Graph learning from data un-
der Laplacian and structural constraints. IEEE Journal of Selected Topics
in Signal Processing, 11(6):825–841, 2017. doi: 10.1109/JSTSP.2017.
2726975.

[81] H. E. Egilmez, E. Pavez, and A. Ortega. Graph learning with Laplacian
constraints: Modeling attractive gaussian markov random fields. In 2016
50th Asilomar Conference on Signals, Systems and Computers, pages 1470–
1474, 2016. doi: 10.1109/ACSSC.2016.7869621.

[82] J. Ying, J. V. de Miranda Cardoso, and D. Palomar. Nonconvex sparse graph
learning under Laplacian constrained graphical model. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neu-
ral Information Processing Systems, volume 33, pages 7101–7113. Curran
Associates, Inc., 2020.

[83] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst. Laplacian ma-
trix learning for smooth graph signal representation. In 2015 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3736–3740, 2015. doi: 10.1109/ICASSP.2015.7178669.

[84] V. Kalofolias. How to learn a graph from smooth signals. In A. Gretton
and C. C. Robert, editors, Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics, volume 51 of Proceedings of Machine
Learning Research, pages 920–929, Cadiz, Spain, 09–11 May 2016. PMLR.

[85] V. Kalofolias and N. Perraudin. Large scale graph learning from smooth
signals. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

116 Bibliography

[86] A. Agarwal, S. Negahban, and M. J. Wainwright. Fast global convergence
rates of gradient methods for high-dimensional statistical recovery. In
J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems, volume 23. Curran As-
sociates, Inc., 2010.

[87] D.P. Bertsekas. Nonlinear Programming. Athena scientific optimization
and computation series. Athena Scientific, 1999.

[88] A. d’Aspremont, O. Banerjee, and L. El Ghaoui. First-order methods for
sparse covariance selection. SIAM Journal on Matrix Analysis and Applica-
tions, 30(1):56–66, 2008. doi: 10.1137/060670985.

[89] J. D. Lee, Y. Sun, and M. A. Saunders. Proximal Newton-type methods
for convex optimization. In F. Pereira, C.J. Burges, L. Bottou, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012.

[90] J. D. Lee, Y. Sun, and M. A. Saunders. Proximal Newton-type methods for
minimizing composite functions. SIAM Journal on Optimization, 24(3):
1420–1443, 2014. doi: 10.1137/130921428.

[91] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate
optimization. The Annals of Applied Statistics, 1(2):302 – 332, 2007. doi:
10.1214/07-AOAS131.

[92] P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth
separable minimization. Mathematical Programming, 117(1-2):387–423,
August 2009. doi: 10.1007/s10107-007-0170-0.

[93] S. Yun and K.-C. Toh. A coordinate gradient descent method for `1-
regularized convex minimization. Computational Optimization and Appli-
cations, 48(2):273–307, May 2009. doi: 10.1007/s10589-009-9251-8.

[94] M. Neuman, V. Jonsson, J. Calatayud, and M. Rosvall. Cross-validation of
correlation networks using modular structure. Applied Network Science, 7
(1), November 2022. doi: 10.1007/s41109-022-00516-5.

[95] D. Disatnik and S. Katz. Portfolio optimization using a block structure for
the covariance matrix. Journal of Business Finance & Accounting, March
2012. doi: 10.1111/j.1468-5957.2012.02279.x.

117 Bibliography

[96] H. Liu, K. Roeder, and L. Wasserman. Stability approach to regularization
selection (stars) for high dimensional graphical models. In Proceedings of
the 23rd International Conference on Neural Information Processing Systems
- Volume 2, NIPS’10, page 1432–1440, Red Hook, NY, USA, 2010. Curran
Associates Inc.

[97] L. Wasserman and K. Roeder. High-dimensional variable selection. The An-
nals of Statistics, 37(5A):2178 – 2201, 2009. doi: 10.1214/08-AOS646.

[98] J. Smiljanić, D. Edler, and M. Rosvall. Mapping flows on sparse networks
with missing links. Physical Review E, 102:012302, Jul 2020. doi: 10.
1103/PhysRevE.102.012302.

[99] M. D. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance
and optimizations of blocked algorithms. In Proceedings of the Fourth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS IV, page 63–74, New York, NY,
USA, 1991. Association for Computing Machinery. ISBN 0897913809.
doi: 10.1145/106972.106981.

[100] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm
887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Up-
date/Downdate. ACM Transactions on Mathematical Software, 35(14),
2008. doi: 10.1145/1391989.1391995.

[101] J. W. H. Liu, E. G. Ng, and B. W. Peyton. On finding supernodes for sparse
matrix computations. SIAM Journal on Matrix Analysis and Applications,
14(1):242–252, 1993. doi: 10.1137/0614019.

[102] X. S. Li. Sparse Gaussian Elimination on High Performance Computers. PhD
thesis, EECS Department, University of California, Berkeley, Sep 1996.

[103] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar. A survey of direct
methods for sparse linear systems. Acta Numerica, 25:383–566, 2016.
doi: 10.1017/S0962492916000076.

[104] A. Anandkumar, V. Y. F. Tan, and A. S. Willsky. High-dimensional graph-
ical model selection: Tractable graph families and necessary conditions.
In Proceedings of the 24th International Conference on Neural Information
Processing Systems, NIPS’11, page 1863–1871, Red Hook, NY, USA, 2011.
Curran Associates Inc.

118 Bibliography

[105] J. Nocedal and S. Wright. Numerical Optimization. Operations Research
and Financial Engineering. Springer, 2006. ISBN 978-0-387-30303-1. doi:
10.1007/978-0-387-40065-5.

[106] A. N. Yzelman. High performance sparse computations applied to a par-
allel conjugate gradient solver. Preprint, 2015.

[107] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Indus-
trial and Applied Mathematics, second edition, 2003. doi: 10.1137/1.
9780898718003.

[108] J. Ballani and D. Kressner. Sparse inverse covariance estimation with hi-
erarchical matrices. Technical report, EPFL Technical Report, 2014.

[109] H. Dalianis. Evaluation Metrics and Evaluation, pages 45–53. Springer
International Publishing, Cham, 2018. ISBN 978-3-319-78503-5. doi:
10.1007/978-3-319-78503-5_6.

[110] J. A. Ramey. datamicroarray: Collection of Data Sets for Classification,
2016. URL https://github.com/ramhiser/datamicroarray.

[111] E. I. G. Nassara, E. Grall-Maës, and M. Kharouf. Linear discriminant anal-
ysis for large-scale data: Application on text and image data. In 2016
15th IEEE International Conference on Machine Learning and Applications
(ICMLA), pages 961–964, 2016. doi: 10.1109/ICMLA.2016.0173.

[112] B. Tu, Z. Zhang, S. Wang, and H. Qian. Making Fisher discriminant anal-
ysis scalable. In E. P. Xing and T. Jebara, editors, Proceedings of the 31st
International Conference on Machine Learning, volume 32 of Proceedings
of Machine Learning Research, pages 964–972, Bejing, China, 22–24 Jun
2014. PMLR.

[113] D. Calvetti and E. Somersalo. Mathematics of Data Science: A Computa-
tional Approach to Clustering and Classification, chapter 4: Linear discrim-
inant analysis, pages 49–61. Data Science. SIAM, 2020.

[114] J. Fan, Y. Feng, and Y. Wu. Network exploration via the adaptive lasso and
scad penalties. Annals of Applied Statistics, 3(2):521–541, 06 2009. doi:
10.1214/08-AOAS215.

[115] R. C. Prim. Shortest connection networks and some generalizations. The
Bell System Technical Journal, 36(6):1389–1401, 1957. doi: 10.1002/j.
1538-7305.1957.tb01515.x.

https://github.com/ramhiser/datamicroarray

119 Bibliography

[116] F. D. Gibbons and F. P. Roth. Judging the quality of gene expression-
based clustering methods using gene annotation. Genome research, 12
(10):1574–1581, oct 2002. doi: 10.1101/gr.397002.

[117] M. R. Berthold and Frank Höppner. On clustering time series using Eu-
clidean distance and Pearson correlation, 2016. URL https://arxiv.
org/abs/1601.02213.

[118] P. D’haeseleer. How does gene expression clustering work? Nature Biotech-
nology, 23(12):1499–1501, 2005. doi: 10.1038/nbt1205-1499.

[119] S. Zhou, P. Rütimann, M. Xu, and P. Bühlmann. High-dimensional covari-
ance estimation based on Gaussian graphical models. Journal of Machine
Learning Research, 12(91):2975–3026, 2011.

[120] E. Dong, H. Du, and L. Gardner. An interactive web-based dashboard to
track COVID-19 in real time. The Lancet. Infectious Diseases, 20(5):533–
534, May 2020. doi: 10.1016/S1473-3099(20)30120-1.

[121] R. J. Sánchez-García, M. Fennelly, S. Norris, N. Wright, G. Niblo,
J. Brodzki, and J. W. Bialek. Hierarchical spectral clustering of power
grids. IEEE Transactions on Power Systems, 29(5):2229–2237, 2014. doi:
10.1109/TPWRS.2014.2306756.

[122] D. Verma and M. Meila. A comparison of spectral clustering algorithms.
Technical report, Department of CSE University of Washington Seattle,
WA98195-2350, 2005.

[123] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman. Eigenfaces vs. fisher-
faces: recognition using class specific linear projection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 19(7):711–720, 1997. doi:
10.1109/34.598228.

[124] F.S. Samaria and A.C. Harter. Parameterisation of a stochastic model for
human face identification. In Proceedings of 1994 IEEE Workshop on Ap-
plications of Computer Vision, pages 138–142, 1994. doi: 10.1109/ACV.
1994.341300.

[125] J.J. Hull. A database for handwritten text recognition research. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 16(5):550–554,
1994. doi: 10.1109/34.291440.

https://arxiv.org/abs/1601.02213
https://arxiv.org/abs/1601.02213

120 Bibliography

[126] T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto,
and D. Ha. Deep learning for classical japanese literature. CoRR,
abs/1812.01718, 2018.

[127] H. E. Egilmez, E. Pavez, and A. Ortega. Graph learning from data un-
der Laplacian and structural constraints. IEEE Journal of Selected Topics
in Signal Processing, 11(6):825–841, 2017. doi: 10.1109/JSTSP.2017.
2726975.

[128] L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In L. K.
Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Pro-
cessing Systems 17, pages 1601–1608. MIT Press, 2005.

[129] D. Wagner and F. Wagner. Between min cut and graph bisection. In
A. M. Borzyszkowski and S. Sokołowski, editors, Mathematical Founda-
tions of Computer Science 1993, pages 744–750, Berlin, Heidelberg, 1993.
Springer Berlin Heidelberg.

[130] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm, and K. Gullapalli. State-of-
the-Art Sparse Direct Solvers, pages 3–33. Springer International Publish-
ing, Cham, 2020. doi: 10.1007/978-3-030-43736-7_1.

[131] M. E. J. Newman. Modularity and community structure in networks. Pro-
ceedings of the National Academy of Sciences, 103(23):8577–8582, 2006.
doi: 10.1073/pnas.0601602103.

[132] L. Hagen and A. B. Kahng. Fast spectral methods for ratio cut partitioning
and clustering. In 1991 IEEE International Conference on Computer-Aided
Design Digest of Technical Papers, pages 10–13, Nov 1991. doi: 10.1109/
ICCAD.1991.185177.

[133] L. Hagen and A. B. Kahng. New spectral methods for ratio cut par-
titioning and clustering. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 11(9):1074–1085, Sep. 1992. doi:
10.1109/43.159993.

[134] B. Bollobás. Graphs, Groups and Matrices, pages 253–293. Springer New
York, New York, NY, 1998. doi: 10.1007/978-1-4612-0619-4_8.

[135] H. Gajewski and K. Gärtner. Domain separation by means of sign chang-
ing eigenfunctions of p-Laplacians. Applicable Analysis, 79(3-4):483–501,
2001. doi: 10.1080/00036810108840974.

121 Bibliography

[136] S. Amghibech. Eigenvalues of the discrete p-Laplacian for graphs. Ars
Combinatoria, 67, 2003.

[137] A. Szlam and X. Bresson. Total variation and Cheeger cuts. In Proceed-
ings of the 27th International Conference on International Conference on
Machine Learning, ICML’10, page 1039–1046, Madison, WI, USA, 2010.
Omnipress.

[138] X. Bresson, T. Laurent, D. Uminsky, and J. Brecht. Convergence and en-
ergy landscape for Cheeger cut clustering. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 25. Curran Associates, Inc., 2012.

[139] R. Bhatia. Matrix Analysis, volume 169. Springer, 1997.

[140] D. Luo, H. Huang, C. Ding, and F. Nie. On the eigenvectors of p-
Laplacian. Machine Learning, 81(1):37–51, 2010. doi: 10.1007/
s10994-010-5201-z.

[141] Y. Koren. Drawing graphs by eigenvectors: theory and practice. Com-
puters & Mathematics with Applications, 49(11):1867–1888, 2005. doi:
10.1016/j.camwa.2004.08.015.

[142] R. Diekmann and R. Preis. AG-Monien Graph Collection.
http://www2.cs.uni-paderborn.de/fachbereich/AG/monien/
RESEARCH/PART/graphs.html, January 2018.

[143] D. Spielman. Spectral graph theory, chapter 5, pages 129 – 162. Chap-
man & Hall/CRC, 1st edition, 2012. ISBN 1439827354. doi: 10.5555/
2141107.

[144] H. Jia, S. Ding, and M. Du. Self-tuning p-spectral clustering based on
shared nearest neighbors. Cognitive Computation, 7(5):622–632, Oct
2015. doi: 10.1007/s12559-015-9331-2.

[145] P. Upadhyaya, E. Jarlebring, and F. Tudisco. The self-consistent field it-
eration for p-spectral clustering, 2021. URL https://arxiv.org/abs/
2111.09750.

[146] S. S. Rangapuram, P. K. Mudrakarta, and M. Hein. Tight continuous re-
laxation of the balanced k-cut problem. In Proceedings of the 27th Inter-
national Conference on Neural Information Processing Systems - Volume 2,
NIPS’14, page 3131–3139, Cambridge, MA, USA, 2014. MIT Press.

http://www2.cs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/graphs.html
http://www2.cs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/graphs.html
https://arxiv.org/abs/2111.09750
https://arxiv.org/abs/2111.09750

122 Bibliography

[147] X. Bresson, X.-C. Tai, T. F. Chan, and A. Szlam. Multi-class transductive
learning based on `1 relaxations of Cheeger cut and Mumford-Shah-Potts
model. Journal of Mathematical Imaging and Vision, 49(1):191–201, May
2014. ISSN 0924-9907. doi: 10.1007/s10851-013-0452-5.

[148] A Cristofari, F Rinaldi, and F Tudisco. Total variation based community
detection using a nonlinear optimization approach. SIAM Journal on Ap-
plied Mathematics, 80(3):1392–1419, 2020. doi: 10.1137/19M1270446.

[149] K. Fountoulakis, D. Wang, and S. Yang. p-norm flow diffusion for local
graph clustering. In H. Daumé III and A. Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pages 3222–3232. PMLR, 13–18
Jul 2020.

[150] M. Liu and D. F. Gleich. Strongly local p-norm-cut algorithms for semi-
supervised learning and local graph clustering. In H. Larochelle, M. Ran-
zato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 5023–5035. Curran As-
sociates, Inc., 2020.

[151] P. Li, N. He, and O. Milenkovic. Quadratic decomposable submodular
function minimization: Theory and practice. Journal of Machine Learning
Research, 21(106):1–49, 2020.

[152] S. Saito and M. Herbster. Generalizing p-Laplacian: spectral hypergraph
theory and a partitioning algorithm. Machine Learning, November 2022.
doi: 10.1007/s10994-022-06264-y.

[153] P. Mercado, F. Tudisco, and M. Hein. Spectral clustering of signed graphs
via matrix power means. In Kamalika Chaudhuri and Ruslan Salakhutdi-
nov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages
4526–4536. PMLR, 09–15 Jun 2019.

[154] D. A. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, and
D. Wagner. Benchmarking for Graph Clustering and Partitioning, pages
73–82. Springer New York, New York, NY, 2014. doi: 10.1007/
978-1-4614-6170-8_23.

123 Bibliography

[155] H. D. Simon and S.-H. Teng. How good is recursive bisection? SIAM
Journal on Scientific Computing, 18(5):1436–1445, September 1997. doi:
10.1137/S1064827593255135.

[156] S. X. Yu and J. Shi. Multiclass spectral clustering. In Proceedings Ninth
IEEE International Conference on Computer Vision, pages 313–319 vol.1,
2003. doi: 10.1109/ICCV.2003.1238361.

[157] Q. Wang, J. Gao, and H. Li. Grassmannian manifold optimization assisted
sparse spectral clustering. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3145–3153, July 2017. doi: 10.
1109/CVPR.2017.335.

[158] D. Dua and C. Graff. UCI machine learning repository, 2017. URL http:
//archive.ics.uci.edu/ml.

[159] H. Sato and T. Iwai. Optimization algorithms on the Grassmann man-
ifold with application to matrix eigenvalue problems. Japan Journal of
Industrial and Applied Mathematics, 31(2):355–400, April 2014. doi:
10.1007/s13160-014-0141-9.

[160] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Ma-
trix Manifolds. Princeton University Press, USA, 2007.

[161] R. H. Byrd, G. Liu, and J. Nocedal. On the local behavior of an interior
point method for nonlinear programming. In Numerical Analysis 1997,
pages 37–56. Addison Wesley Longman, 1998.

[162] A. Antoniou and L. Wu-Sheng. Practical Optimisation: Algorithms and
Engineering Applications. ISTE. Springer Science + Business Media, LLC,
New York, USA, 2017.

[163] P. A. Absil, R. Sepulchre, P. Van Dooren, and R. Mahony. Cubically con-
vergent iterations for invariant subspace computation. SIAM Journal on
Matrix Analysis and Applications, 26(1):70–96, 2004. doi: 10.1137/
S0895479803422002.

[164] I. S. Duff, J. K. Reid, and J. A. Scott. The use of profile reduction algo-
rithms with a frontal code. International Journal for Numerical Methods
in Engineering, 28(11):2555–2568, 1989. doi: https://doi.org/10.1002/
nme.1620281106.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

124 Bibliography

[165] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a Matlab
toolbox for optimization on manifolds. Journal of Machine Learning Re-
search, 15(1):1455–1459, January 2014.

[166] W. Huang, P.-A. Absil, K. A. Gallivan, and P. Hand. Roptlib: An object-
oriented C++ library for optimization on Riemannian manifolds. ACM
Transactions on Mathematical Software, 44(4), July 2018. doi: 10.1145/
3218822.

[167] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigen-
vectors a multilevel approach. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29(11):1944–1957, November 2007. ISSN 0162-
8828. doi: 10.1109/TPAMI.2007.1115.

[168] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partition-
ing graphs. The Bell System Technical Journal, 49(2):291–307, 1970. doi:
10.1002/j.1538-7305.1970.tb01770.x.

[169] D. B. Graham and N. M. Allinson. Characterising Virtual Eigensignatures
for General Purpose Face Recognition, pages 446–456. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1998. doi: 10.1007/978-3-642-72201-1_25.

[170] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for
testing community detection algorithms. Physical Review E, 78:046110,
Oct 2008. doi: 10.1103/PhysRevE.78.046110.

[171] S. Sieranoja and P. Fränti. Fast and general density peaks clustering. Pat-
tern Recognition Letters, 128:551 – 558, 2019. doi: 10.1016/j.patrec.
2019.10.019.

[172] D. Hond and L. Spacek. Distinctive descriptions for face processing. In
Proceedings of the 8th British Machine Vision Conference BMVC97, Colch-
ester, England, pages 320–329, September 1997.

[173] N. C. Ebner, M. Riediger, and U. Lindenberger. FACES–a database of facial
expressions in young, middle-aged, and older women and men: devel-
opment and validation. Behavior Research Methods, 42(1):351–362, Feb
2010. doi: 10.3758/BRM.42.1.351.

[174] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):
1332–1338, 2015. doi: 10.1126/science.aab3050.

125 Bibliography

[175] X. Zhu, Y. Zhu, and W. Zheng. Spectral rotation for deep one-step cluster-
ing. Pattern Recognition, 105:107175, 2020. doi: 10.1016/j.patcog.2019.
107175.

	Introduction
	Estimating graphical structures
	Clustering graphical clustures
	Outline and notation

	I Sparse graph learning
	Graphical model estimation
	Factorization and conditional independency
	Gaussian graphical models
	Sparsity considerations

	1 regularized negative log-likelihood
	M-matrices
	Connection to graph Laplacians

	Related work on graph learning
	Precision matrix estimation
	M-matrix estimation

	Sparse quadratic approximation for graph learning
	Quadratic approximation
	Motivation
	The quadratic model
	Newton direction via coordinate descent
	Reducing the size of the search space
	Step size computation
	Key steps and computational challenges

	The SQUIC algorithm
	Sparse sample covariance matrix
	Matrix regularization parameter

	Exploiting block structure
	Supernodal sparse Cholesky factorization
	Block approximate matrix inversion
	Block coordinate descent update

	Sparse M-matrix estimation
	A post processing approach
	A constrained optimization approach

	Numerical results for graph learning
	Estimating precision matrices
	Comparisons with other methods
	Scalability
	Classification of microarray data

	Estimating M-matrices
	Comparisons with other methods
	Incorporating graphical bias
	Clustering of COVID-19 daily cases
	Image classification

	II Nonlinear spectral clustering
	Spectral methods for graph clustering
	Graphs and graph cut metrics
	Spectral bipartitioning
	Bipartitioning with the graph p-Laplacian
	Direct multiway spectral clustering
	Related work on p-spectral methods

	Direct multiway p-spectral clustering
	Motivation for multiple p-eigenvectors
	A Grassmannian approach to p-spectral clustering
	Optimization techniques
	Discretizing the p-eigenvectors
	Multiway p-Grassmann clustering algorithm

	Numerical results for graph clustering
	Experiments with artificial data
	Reducing the value of p
	Increasing the number of clusters
	p-spectral embedding

	Experiments with real-world data
	Classification of facial image datasets
	Classification of handwritten characters
	Discussion of real-world results

	Conclusions
	Derivation of gradient and Hessian for the pGrass algorithm
	Full list of clustering numerical results
	Bibliography

