Genuine atomic multicast on Apache Kafka

E. Steinmacher, D. Pasadakis, E. De Lima Batista, O. Schenk, F. Pedone, rH 2 4
& P. Eugster SC

Zurich 3-5 June 2024

sSwitzerland

Universita della Svizzera Italiana, Institute of Computing, Lugano, Switzerland.
Universita della Svizzera Italiana, Computer Systems Institute, Lugano, Switzerland.

» Apache Kafka is an event streaming platform that » Data sets are generated according to their number of messages num msg
guarantees total order (TO) within a partition but € [10%,10Y and message size msg size € [10%,107] [B]. The ratio r =
not across partitions.[1] k fk log(num msg)/log(msg_size) is characteristic for a data set and is used to la-
=*» Proof of concept: Expand the Apache a q bel.

Kafka framework with TO multicast across
partitions. Kafka without TO TO w. tree height TO w. bottleneck size
Partitioning a.) a)
. - Pl|—CL_= [[Fp]—> [cLu]—> [cu] | [FPi]\ et =
e Producers can create multiple data streams. Each data stream is input to b) »CL " =
a partition within a topic. "5 —> [= b) P2 €2
— "pl[cL sl [cLa]>[cH] | 1)
e Partitioning provides scalability. However, if multiple consumer groups are P2l |C2 = 5 _
, b o) [p1 C1 ms-m
subscribed to the same subset of partitions, they do not consume the mes- ¢) z
sages in the same order. I P[*|CL #[»-»|CL 8|>|CH 2|=|cL= --ll" ¢2 mrm
=?» Need of a new ordering scheme. oy o= . / \ o anm
Model assumptions - TO is ensured via the or-
Pn Cn me-m .
‘ . L —_— dering scheme. The num-
e Apache Kafka replicates partitions, thus providing fault-tolerance. Al . b ber of collectors in between TQ- is ensured via th.e or-
e Channels are FIFO and reliable. .consumers()are. S.u “|is a) 1, b) 2, ¢) n € dering scheme. The size of
scribed to all partitions {4,8,16,32}. the bottleneck ranges from
» Setup of data pipeline: (P)-a) 1P, 1C;b) 2P 1, via a) 2, to b) n €
2 C;¢c) n P, n C, where {4,8,16,32}.
1. Message-ID tuples (msg, ID) are stored within the partitions of topic A. n e {4,8,16,32}.
2. Consumer groups are subscribed to topic A. Consumers within their group s X E o O
o /5 /7 /5 4/4
are assigned to partitions of topic A. =¥ Subscription link: Sends (msg, ID) Z i |>:<| o 'g e <V> o Z e |>:<| o 'g‘ e <V> ws | A o6 O o O 6 V 4

tuples.
3. The hi ' ' 10%4 X 1.4 x 107 1 o
. The hierarchical ordering scheme, orders the IDs and produces them to the
topic "Msg. TO”. o A P
4. Consumer groups are also subscribed to ”Msg. TO”. X g) 121071 v
% 107 5)
5. Consumers deliver a received message (msg, ID) as soon as they also received = | ”
the ID via the ordering scheme. ;é'j @ é % 107 1
S o
. .- £ 9x10°
Subscriptions 10~ 4 ¥ <]
(msg, ID) 8 x 10° -
_— : &
Consumer Q | | | 2108 K | | |
[Partition 1 | Groups 10 105 106 107 10 105 106 107
\ Message size [B] Message size [B]
|_Partition 2 |
_ \4 CG1 » Each data point represents the mean of all configurations (either 1, 2, ..., n P &
L Partition 3 | \ Orderi Msg. TO @ Cor 1, 2, ..., n CL) of a topology (Kafka without TO, TO w. tree height, TO
[... | \ raering \ w. bottleneck size), since different configurations show no clear trend.
sCheme [Partition 1 | ﬂ
(ID) \ Partition 2] G2 » For small msg_size the latency is increased by 5x to 10x, due to Kafka’s batch-
1TI
\ ?Illl)b) ing for small and many messages. There is no latency increase for large msg_size.
|_Partition 3 | CG 3
\ | | @ » There is no throughput decrease when the Kafka is expanded with TO across
(ID) partitions.
So far this scheme is not suitable for latency critical applications when r» > 10. Kafka’s
. . intrinsic properties have to be further explored, especially its batching of messages.

Ordering Schemes & Implementation

Hierarchical scheme Merge algorithm Implementation
m ’ » If the lower level collectors share one or multiple e Python interface using kafka-python.
m — !Cl - .| partitions, the streams have to be merged, such e Work in progress:
m I—gl\‘ICL 534 e[] that the lower level streams order is preserved.

— Move to distributed system (e.g. Confluent

(CL:3,4 ma =] >
mb" Algorithm 1 Merge algorithm Cloud).

Input: Input streams s;,i € [1,..., N|, set of shared partitions S
Output: Merged stream preserving TO

I: Scount — O;

2: S1,count < 0,... SN,count < 0;

— Implement scheme using kafka streams.

Toy example: Consumer (C) C1 consumes partitions

(P) P1, P2 and P3. C2 consumes P2, P3 and P4. C3 3 s, & D, Qsy — T > queues for each s References
consumes P3, P4, P5. The arrangement of the tree is 4: f i d ,
o s ;. Orl\n&S% 11? Coniunfr N d [1] The Apache Software Foundation.
an optimization problem. [2] - atch msg to its ¢ and scount
6: if Scount == Secount and msg.partition ¢ S then https://kafka.apache.org, 2024.
: " . 7: send(msg)

> Consume.rs are su]ilscrlbedft(ﬁ pal"tlthIlSl. Ail their 8 else [2] Paulo Coelho, Tarcisio Ceolin Junior, Alysson

common nterests have to follow a total order. % flt;append(msg) S th Bessani, Fernando Dotti, and Fernando Pedone.
10: 1If msg.partition € en . . .

) Msg_IDS are Send from partitions to consumers via 11: chouft Seount + 1 Byzantlne fau1t-t01erant atomic mUItlcaSt. 48th An-
layers formed by collectors (CL). The collectors re- 12: if Sicount > Scount Vi € [1,2,..., N] then nual IEEE/IFIP International Conference on De-
semble common interests. 13: V ¢: send(msg) until msg.partition € S pendable Systems and Networks, 2018.

14: send(msg), where msg.partition € S > del. same msg

» A consumer receives its order by having subscribed in all other ¢

to the collectors that resemble its common interest 1o Scount <= Scount + 1 Student researcher project by Ekkehard Steinmacher.

= ordering of the msg-IDs. 16: V q: send(msg) until msg.partition € S or ¢ == ckkehard. steinmacher@usi.ch

	References

