
Genuine atomic multicast on Apache Kafka
E. Steinmacher, D. Pasadakis, E. De Lima Batista, O. Schenk, F. Pedone,
& P. Eugster

Universitá della Svizzera Italiana, Institute of Computing, Lugano, Switzerland.
Universitá della Svizzera Italiana, Computer Systems Institute, Lugano, Switzerland.

Scaling throughput within Apache Kafka

➤ Apache Kafka is an event streaming platform that
guarantees total order (TO) within a partition but
not across partitions.[1]
➜ Proof of concept: Expand the Apache
Kafka framework with TO multicast across
partitions.

Partitioning

• Producers can create multiple data streams. Each data stream is input to
a partition within a topic.

• Partitioning provides scalability. However, if multiple consumer groups are
subscribed to the same subset of partitions, they do not consume the mes-
sages in the same order.
➜ Need of a new ordering scheme.

Model assumptions

• Apache Kafka replicates partitions, thus providing fault-tolerance.

• Channels are FIFO and reliable.

➤ Setup of data pipeline:

1. Message-ID tuples (msg, ID) are stored within the partitions of topic A.

2. Consumer groups are subscribed to topic A. Consumers within their group
are assigned to partitions of topic A. ➜ Subscription link: Sends (msg, ID)
tuples.

3. The hierarchical ordering scheme, orders the IDs and produces them to the
topic ”Msg. TO”.

4. Consumer groups are also subscribed to ”Msg. TO”.

5. Consumers deliver a received message (msg, ID) as soon as they also received
the ID via the ordering scheme.

Topic A

Partition 1

Partition 2

Partition 3

...

Msg. TO

Partition 1

Partition 2

Partition 3

...

Ordering
Scheme

CG 1

CG 2

CG 3

...

Consumer
Groups

Subscriptions
(msg, ID)

(ID)

(ID)

Sub.
(ID)

1

2

3

4

5

Numerical results

➤ Data sets are generated according to their number of messages num msg

∈ [102, 104] and message size msg size ∈ [104, 107] [B]. The ratio r =
log(num msg)/ log(msg size) is characteristic for a data set and is used to la-
bel.

Kafka without TO

C1P1

P2

Pn

C2

Cn

C1

C2

P1

P2

C1P1

a)

b)

c)

All consumers (C) are sub-
scribed to all partitions
(P). a) 1 P, 1 C; b) 2 P,
2 C; c) n P, n C, where
n ∈ {4, 8, 16, 32}.

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0.8

0.9

1.0

1.1

1.2

1.3 1e7

2/5
2/6

2/7
3/4

3/5
3/6

4/4
4/5

TO w. tree height

P CL CL C

P CL CL C

P CL C

a)

b)

c)

TO is ensured via the or-
dering scheme. The num-
ber of collectors in between
is a) 1, b) 2, c) n ∈
{4, 8, 16, 32}.

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0.8

0.9

1.0

1.1

1.2

1.3 1e7

2/5
2/6

2/7
3/4

3/5
3/6

4/4
4/5

TO w. bottleneck size

C1

C2
CL

P1

P2

CL

C1P1

P2

Pn

C2

Cn

a)

b)

TO is ensured via the or-
dering scheme. The size of
the bottleneck ranges from
1, via a) 2, to b) n ∈
{4, 8, 16, 32}.

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0.8

0.9

1.0

1.1

1.2

1.3 1e7

2/5
2/6

2/7
3/4

3/5
3/6

4/4
4/5

104 105 106 107

Message size [B]

10 2

10 1

100

La
te

nc
y 

[s
]

104 105 106 107

Message size [B]

8 × 106

107

1.2 × 107

1.4 × 107

7 × 106

9 × 106

Th
ro

ug
hp

ut
 [B

/s
]

➤ Each data point represents the mean of all configurations (either 1, 2, ..., n P &
C or 1, 2, ..., n CL) of a topology (Kafka without TO, TO w. tree height, TO
w. bottleneck size), since different configurations show no clear trend.

➤ For small msg size the latency is increased by 5× to 10×, due to Kafka’s batch-
ing for small and many messages. There is no latency increase for large msg size.

➤ There is no throughput decrease when the Kafka is expanded with TO across
partitions.

So far this scheme is not suitable for latency critical applications when r ≥ 10. Kafka’s
intrinsic properties have to be further explored, especially its batching of messages.

Ordering Schemes & Implementation

Hierarchical scheme

CL:2,3

P1

P2

P3

P4

P5

C1

C2

C3
CL:3,4

CL:2,3,4

Toy example: Consumer (C) C1 consumes partitions
(P) P1, P2 and P3. C2 consumes P2, P3 and P4. C3
consumes P3, P4, P5. The arrangement of the tree is
an optimization problem. [2]

➤ Consumers are subscribed to partitions. All their
common interests have to follow a total order.

➤ Msg-IDs are send from partitions to consumers via
layers formed by collectors (CL). The collectors re-
semble common interests.

➤ A consumer receives its order by having subscribed
to the collectors that resemble its common interest
➜ ordering of the msg-IDs.

Merge algorithm

➤ If the lower level collectors share one or multiple
partitions, the streams have to be merged, such
that the lower level streams order is preserved.

Algorithm 1 Merge algorithm

Input: Input streams si, i ∈ [1, ..., N ], set of shared partitions S
Output: Merged stream preserving TO
1: Scount ← 0;
2: s1,count ← 0, ..., sN,count ← 0;
3: qs1 ← ∅, ..., qsN ← ∅; ▷ queues for each s
4: for msg in consumer do
5: Match msg to its q and scount
6: if scount == Scount and msg.partition /∈ S then
7: send(msg)
8: else
9: q.append(msg)
10: if msg.partition ∈ S then
11: scount ← scount + 1

12: if si,count > Scount ∀ i ∈ [1, 2, ..., N ] then
13: ∀ q: send(msg) until msg.partition ∈ S
14: send(msg), where msg.partition ∈ S ▷ del. same msg

in all other q
15: Scount ← Scount + 1
16: ∀ q: send(msg) until msg.partition ∈ S or q == ∅

Implementation

• Python interface using kafka-python.

• Work in progress:

– Move to distributed system (e.g. Confluent

Cloud).

– Implement scheme using kafka streams.

References

[1] The Apache Software Foundation.
https://kafka.apache.org, 2024.

[2] Paulo Coelho, Tarcisio Ceolin Junior, Alysson
Bessani, Fernando Dotti, and Fernando Pedone.
Byzantine fault-tolerant atomic multicast. 48th An-
nual IEEE/IFIP International Conference on De-
pendable Systems and Networks, 2018.

Student researcher project by Ekkehard Steinmacher.
ekkehard.steinmacher@usi.ch


	References

