

- Weber, Mark, Jie Chen, Toyotaro Suzumura, Aldo Pareja, Tengfei Ma, Hiroki Kanezashi, Tim Kaler, Charles E. Leiserson, and Tao B. Schardl. "Scalable Graph Learning for Anti-Money Laundering: A First Look." arXiv, November 30, 2018. https://doi.org/10.48550/arXiv.1812.00076
- Elliott, Andrew, Mihai Cucuringu, Milton Martinez Luaces, Paul Reidy, and Gesine Reinert. "Anomaly Detection in Networks with Application to Financial Transaction Networks." arXiv, May 24, 2019. https:// doi.org/10.48550/arXiv.1901.00402.

Problem Description

In this study we tackle the problem of money laundering detection in large-scale financial networks. We generate synthetic graph-structured data emulating a financial system with embedded money laundering topologies. We employ various Graph Deep Learning techniques and compare their effectiveness in detecting fraudulent accounts.

Synthetic Dataset Generation

Graph G(V, E) directed-multigraph with n vertices and m edges.

- Vertices (V): Bank accounts
- Edges (E): Transactions between accounts
- Financial graph-structured dataset generated using AMLsim. We specify number of normal and anomalous accounts, types of money laundering topologies, and the duration of simulation.
- Post-processing of generated dataset. Using edge-level features (transaction amount as weights of the edges), and node connectivity metrics, we compute node-level features used for training GNN models.

Money Laundering Topologies

$$ext{SND}(i) = rac{d_t(i) - ext{mean}(d_t)}{ ext{std}(d_t)}$$

$$V(i) = rac{2 \cdot |E_{C(i)}|}{|V_{C(i)}| \cdot (|V_{C(i)}| - 1)|}$$

Graph Neural Network Models And Datasets

Data Processing and Model Training Pipeline

 \frown Α Τ • • 1 **→ \T 1** 1 1 1 . •

 $h_i^{l+1} = anh\left(h_i^l \Theta_1^l + \sum_{j \in N(i)} \widetilde{a}_{ji} \cdot h_j^l \Theta_2^l
ight)$

Where h_i^l is the l^{th} convolutional layer for node $i_{l} \Theta_1^l$ and Θ_2^l are learnable parameter matrices, \widetilde{a}_{ii} is an element of the graph shift operator for nodes j and i, and $\sum_{j \in N(i)}$ is the aggregator function for neighborhood of node i. Θ_1^l and Θ_2^l learnt with linear layer of size z.

GraphSAGE [Hamilton et al., 2017]

Graph Convolutional Network (GCN) [Kipf and Welling, 2017]

Graph Attention Network (GAT) [Veličković et

Graph Isomorphism Network (GIN) [Xu et al.

Datasets

datasets generated with varying $\frac{1}{Da^{\dagger}}$ Four number of anomalous nodes $|V_A|$, number $|V_N|$, and ratios of of normal nodes anomalous to normal nodes. Number of remains constant across all nodes datasets. Only the number of anomalous accounts and number of edges changes.

t al., 2018]					
., 2019]					
Datasets					
taset	Balance	V	$ V_A $	$ V_N $	E
	(Anom./Normal)				
	55%/45%	60,215	32,877	$27,\!338$	$1,\!076,\!063$
	11%/89%	60,215	$6,\!581$	$53,\!634$	$1,\!001,\!080$
	5%/95%	$60,\!215$	$3,\!279$	$56,\!936$	$992,\!675$
	2%/98%	60,215	$1,\!288$	$58,\!927$	986,789

Convolutional Layer Steps

k = 2

eration
Ì

Input: $G(V, E)$	▷ generated dataset from AMLsim				
Output: A_V, A_E, el, y \triangleright noc	de attributes, edge attributes, edge list, target				
1: $A_V \leftarrow \text{empty}(V , 1)$					
2: A_V .append(BasicNodeTests($G(V, E)$))	▷ GAW, Std. Degree				
3: A_V .append(CommunityDetection($G(V, E)$))	⊳ Louvain Method				
4: A_V .append(TransactionStatistics) $(G(V, E))$	())) b total amount in, ect				
5: $A_E \leftarrow E.weights$	▷ transfer amount				
6: $el \leftarrow E.edge_list$	\triangleright [source, target] of shape ($ E \times 2$)				
7: $y \leftarrow \text{node class label}$	\triangleright boolean $\{0,1\}$				
8: return A_V , A_E , el. u					
Algorithm 2 GNN Model Training Pipeline					
Input: A_V, A_E, el, y					
Output: model					
1: $\vec{k} \leftarrow 2$	▷ number of convolutional layers				
2: hidden_size $\leftarrow A_V.num_features$	\triangleright number of node features				
3: model = GNNModel(hidden_size, k)					
4: train. valid. test \leftarrow train_test_split(A_V . A	$(E, el, u) \triangleright$ indices with [35%, 15%, 50%] split				
5: for epoch do					
6: model.train $(A_V, A_E, el, u, train)$					
7: model.valid(A_V, A_E , el. u , valid)					
8: end for					
9: return model					

