
High Performance Topology Optimization
Ezekiel Barnett, Sumeet Gyanchandani, Sameer Rawat, Dimosthenis Pasadakis, Olaf Schenk

Topology Optimization Problem

Topology Optimization is a mathematical method which optimizes the layout of a material given a set of
loads and volume constraints such that global compliance is minimized. The solution algorithm is formulated
as an iterative method based around a finite element discretization of the design domain (MBB beam) and
an optimization procedure to allocate material such that compliance is minimized.

Compliance Minimization

min:
x

c(x) = uTKu =
N∑
e=1

(xe)
puT

e keue

subject to:
V (x)

V0
= Vf , Ku = f ,

0 < xe ≤ 1

where,

c(x) = Compliance,

u = Global Displacement Vector,

f = Global Force Vector,

K = Global Stiffness Matrix,

ue = Element Displacement Vector,

ke = Element Stiffness Matrix,

xe = Element Design Variable,

N = Number of elements,

p = Penalization power,

V (x) = Material volume,

V0 = Design domain volume,

Vf = Volume Fraction.

Iterative Refinement and Computational Cost

The Topology Optimization algorithm functions by iteratively redistributing volume across the mesh elements
such that compliance is minimized. See below for the 2nd, 5th, and 100th iteration of the algorithm on a
domain of 200 x 50 elements.

⇒ ⇒

The main computational cost of the Topology Optimization algorithm is solving the linear system in order to
compute compliance. The stiffness matrix K grows linearly with the number of elements. Also observe the
sparsity pattern formed by the stiffness tensor of the 2D quadrilateral elements for a 4× 4 mesh.

nelx× nely K

10× 10 242× 242

20× 20 882× 882

40× 40 3362× 3362

80× 80 13122× 13122

160× 160 51842× 51842

320× 320 206082× 206082

Topology Optimization Algorithm

Algorithm 1 Topology Optimization

Input: nelx, nely, Vf , p, rmin

Output: c(x), x

1: function TopOpt(nelx, nely, Vf , p, rmin)

2: Initialize all elements in x← Vf

3: while not converged do

4: u← FE(nelx, nely, x, f)

5: c(x)← 0

6: for every element e in x do

7: c(x)← c(x) + (xe)
puT

e keue

8: δc(x)← −p(xe)p−1uT
e keue

9: end for

10: δc(x)←MIF(nelx, nely, rmin, x, δc(x))

11: x← OC(nelx, nely, f, x, δc(x))

12: end while

13: return c(x), x

14: end function

Finite Element Analysis

Solve Ku = f

Mesh-Independency Filtering

Ĥf = rmin − dist(e, f)

∂̂c

∂xe
=

1

xe
∑N

f=1 Ĥf

∑N
f=1 Ĥfxf

∂c

∂xf

Optimality Criteria Optimizer

xnew
e =



max(xmin, xe −m)

if xeB
η
e ≤ max(xmin, xe −m),

xeB
η
e

if max(xmin, xe −m) < xeB
η
e

< min(1, xe +m),

min(1, xe +m)

if min(1, xe +m) ≤ xeB
η
e

Topology Optimization consists of 4 main stages which are iterated until some change criterion is
satisfied: a FE procedure to determine compliance, then computation of sensitivities, a filtering (MIF)
to insure mesh-independence, and a design update through the element densities (OC).

The MIF incorporates a convolution operator Ĥf to create a filter imposing a design restriction to
ensure the existence of a solution.

The OC optimizer utilizes a heuristic update based on the given criteria where m is a positive move
limit, η is a numerical damping coefficient, Be is found from the optimality condition and is computed
after solving a Lagrange Multiplier problem via a bisection algorithm.

Linear Elasticity Analysis with FEniCS

We simulate forces and deformations on our optimized topology using the FEniCS library in a linear elasticity
solver to compute displacements and von Mises stresses for various isotropic materials, with a domain of
dimensions 320m x 160m.

Linear Elasticity Formulation

−O · σ = f ∈ Ω (1)

σ = λ(O · u)I + µ(Ou + (Ou)T ) (2)

a(u,v) =

∫
Ω
σ(u) : ε(v)dx (3)

(1) Deformations on the domain Ω are written as rela-
tion between the gradient of the stress tensor σ and a
point load f . The stress tensor σ (2) is computed from
u, the displacement with Lamé’s elasticity parameters
µ and λ. FEniCS takes the variational formulation
(3) to construct our linear system, solve for displace-
ments, and use these displacements to compute von
Mises stresses.

⇒
Optimized Topology for MBB problem [left]. Mesh generation using quadrilateral elements [right].

Case PointLoad(MN) YoungsMod(GPa) PoisRatio MaxDisplace(m) MinV.M.(GPa) MaxV.M.(GPa)

SteelASTM-A36 5 200 .31 7.98 .00001 .1938

Case PointLoad(MN) YoungsMod(GPa) PoisRatio MaxDisplace(m) MinV.M.(GPa) MaxV.M.(GPa)

TitaniumTi-6Al 5 113.3 0.37 14.45 .0001 .28672

Convergence and Performance Analysis

Convergence Analysis

The objective function approaches the minimum rapidly, however the
design update process lengthens the convergence significantly resulting
in numerous fine-grained changes.

Motivation

The entire procedure consists of six discrete segments. The chart
below shows the proportion of each, in comparison to the entire com-
pute time. The computational bottleneck resides in solving the linear
system (Ku = f), and is proportional to an increasing mesh size.

Sparse Linear Solver Choice

The choice of the sparse linear solver to compute compliance has a
major impact on the algorithm’s overall compute time. We performed
experiments on a node of the ICS cluster, which has 2 × Intel E5-2630
v3, 16 (2 × 8) cores with 128GB DDR4 RAM. Results displayed below.

O. Sigmund, ”A 99 line topology optimization code written in Matlab”, in Structural and Multidisciplinary Optimization, 2001
M. S. Andersen, J. Dahl, and L. Vandenberghe, ”CVXOPT: A Python package for convex optimization, version 1.1.5”, Available at abel.ee.ucla.edu/cvxopt, 2012
M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes and G. N. Wells, ”The FEniCS Project Version 1.5”, Archive of Numerical Software, vol. 3, 2015


