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Abstract

Clustering is considered one of the most important unsupervised learning method used to find hidden patterns

and group data with similar characteristics. In particular, spectral clustering has become in recent years one

of the most used techniques for clustering the data in its different properties and shapes, due to its simplic-
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emerging from machine learning applications. To achieve this, we initially experiment with different similarity

graphs configurations, constructed from the datasets, and select the one that best describes the datasets under
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1 Introduction

Clustering is considered the most important unsupervised learning method used to find hidden patterns or

grouping data in exploratory data analysis [5] and data mining applications [24] . It has a large number of

applications spread across various domains like recommendation engines [16], market segmentation [19], so-

cial network analysis [29], search result grouping [22], medical imaging [15], image segmentation [21]. The

main purpose of clustering is to divide the dataset into natural groups (clusters), with data points in the same

group being similar (intra-cluster similarity), whereas data points in different groups dissimilar (inter-cluster

dissimilarity).

Traditional clustering methods, such as k-means algorithm, are easy to implement and give good quality re-

sults when the clusters are well separated. However they lack the ability to handle complex data structures,

as they do not take into account densities of the graph, but rely only on topological features. Therefore they

tend to fail on high-dimensional spaces.

To overcome the limit of traditional approaches, another clustering method based on algebraic graph theory

has become increasingly popular due to its simple implementation and promising computational performance

in many clustering problems: spectral clustering. In general it can be applied in particular cases where tradi-

tional methods fail, for example non-convex data sets [32].
In spectral clustering, the problem of data clustering transforms into the problem of graph partitioning. The

first is constructing an undirected weighted graph, called adjacency matrix, with each point in the dataset

being a vertex and the similarity value between any two points being the weight of the edge connecting the

two vertices. Subsequently, form the associated Laplacian matrix and map each point to a lower-dimensional

representation, based on one or more eigenvectors, depending on the number of clusters we need. Finally,

these eigenvectors (spectral coordinates) are clustered using the k-means algorithm on this new representa-

tion.

Spectral clustering is considered a powerful method with strong theoretical background to cluster data. It has

been applied successfully in various scientific domains, such as data analysis [5], speech separation[2], video

indexing [20], multi-valued function recognition [10], or image processing [21].
This report is structured as follows: in Appendix A, we delineate the general development of the project and the

main challenges; in section 2, we give the background knowledge about the spectral clustering method; sec-

tion 3, is the evaluation part of the project, where we set up the techniques that will be used in the testing

phase and comment on the results obtained; lastly, in section 4, we summarize the entire study, and talk about

possible future extensions. We refer mostly to the von Luxburg [26] paper, the "Modern algorithms of cluster

analysis [27]" book, and references therein for a detailed introduction to various aspects of spectral clustering.

For the remainder of this text our mathematical notation is the following: a vector, which in our case will be a

data point in a (high-dimensional) state space (or feature space),is denoted as a lower case letter in bold, for

example s; a set, which in our case is a dataset of n data points, is denoted as an upper case letter, for example

S = {s1, . . . , sn}; a matrix, is denoted as an upper case letter in bold, for example W ∈ IRm×n, with wi j being

an element of the matrix W at row i and column j; a scalar multiplier is denoted as a lower case greek letter.
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2 Spectral clustering background

2.1 Graph notation

Let Γ = (V, E) be an undirected and connected graph. Here

V = {v1,v2, ...,vn}

is the set of nodes, and E is set of m edges

ei j = {vi ,v j}

connecting the vertices. If the graph is weighted, then it’s adjacency matrix is denoted as W ∈ IRn×n

W=







w11 . . . w1n
...

. . .
...

wn1 . . . wnn






,

and its weights are in the form

W(vi ,v j) =

(

s(vi ,v j) if {vi ,v j} ∈ E

0 otherwise
(1)

where s(vi , v j) is a function that computes the weight of the edges connecting the vertices, and since Γ is

undirected, it means that W is symmetric, therefore wi j = w ji; in the next sections we will discuss about

different ways to compute the weights of a graph.

The sum of W ′s i-th row, denoted di , that is defined as

di =
n
∑

j=1

wi j (2)

is the degree of the node vi , and the diagonal matrix D ∈ IRn×n

D=











d1 0 . . . 0

0 d2 . . . 0
...

...
. . .

...

0 0 . . . dn











whose diagonal (i, i)-th element is the degree di , is said to be the degree matrix, which is defined as

D= diag (d1, d2, ..., dn) (3)

In order to compute the size of any subset X ⊂ V , we have two different metrics, very useful when dealing

with balanced cut criteria: |X | as the number of vertices belonging to X , called also cardinality, and the volume

of X, which measures the size of X as the sum of the degrees of the vertices belonging to the set:

vol(X ) =
∑

vi∈X

di . (4)
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2.2 Clustering objectives

The main objective of spectral clustering (SC) is to find a partition of the graph such that the edges between

different groups have very low weights, and the edges within a group have high weights. This corresponds

to a partitioning with high within-cluster similarity and low inter-cluster similarity. The resulting graph rep-

resenting these results is called the similarity graph. The clusters should be balanced in the sense that the

size/density of the clusters should not differ too much. Given a dataset with a set of points in a feature space

(a space where each point cannot be represented spatially) and a similarity measure, the data can be trans-

formed into a weighted, undirected graph Γ , where the vertices V represent the points in the feature space

and the positive edge weights W encode the similarity of pairs of points. A clustering of the points is then

equivalent to a partition of V into subsets {C1, C2.., Ck}, where every Ci is a cluster.

2.2.1 Balanced graph cut criteria

SC treats the problem of clustering as a graph partitioning problem and constructs an undirected weighted

graph W, called also adjacency matrix, with each point in the dataset being a vertex and the similarity value

between any two points being the weight of the edge connecting the two vertices. The main goal of this

approach is to evenly distribute the number of nodes while minimizing weight of cut edges, that is the sum of

weights of the removed edges, which basically means solving the minimum cut (min-cut) problem. Therefore

the clustering problem is equivalent to choosing a partition C1, C2, ..., Ck for a given number k of subsets of a

graph which minimizes a specific objective function, in this case the min-cut approach

min cut(C1, C2, ..., Ck) =
1
2

k
∑

i=1

cut(Ci , Ci), (5)

where 1/2 is employed for not counting the edges twice within the cut and

cut(Ci , Ci) =
∑

i∈C , j∈C

wi j (6)

represents the weight of the edges connecting the nodes belonging to the cluster Ci , and the complement Ci ,

that is the set of all the other clusters. In general,

Ci + Ci = the entire graph. (7)

This sort of cutting criteria in practice often does not provide a good partition. The issue is that in many cases,

the answer of min-cut simply separates one individual vertex from the rest of the graph i.e. a really small

sub-graph is cut away, therefore our partitioned graph is not balanced. To avoid this disadvantage, we utilize

slightly different criteria, that enforce clusters with a reasonably large number of points. The general form of

these criteria is the following:

F(C1, C2, ..., Ck) =
k
∑

j=1

cut(C j , C j)

f (C j)
, (8)

where cut(C j , C j) is the sum of weights of the removed edges (cut edges) between cluster C j and its comple-

ment C j , F is the kind of balanced cut we want to achieve, and f is a function applied to the Ci cluster to

measure its size.

There are several criteria following this general rule, but we will consider in our study two of them: RatioCut

(RCut) and the NormalizedCut (NCut).

4



The RCut introduces the size of clusters, which reduces the possibility of over-split, indeed the size of a subset

Ci of a graph is measured by its number of vertices |Ci |:

RCut(C1, C2, ..., Ck) =
k
∑

i=1

cut(Ci , Ci)
|Ci |

, (9)

and the main disadvantage of this method is that it only focuses on reducing the similarity between clusters.

The NCut instead, takes into consideration both inter-cluster connections and intra-cluster connections, with

the size of a subset Ci measured by the weights of its edges vol(Ci):

NCut(C1, C2, ..., Ck) =
k
∑

i=1

cut(Ci , Ci)
vol(Ci)

. (10)

Also we note that the minimum of the above functions are achieved if, when dealing with RCut all |Ci | coin-

cide, whereas with NCut is achieved if all vol(Ci) coincide [26]. Relaxing NCut ends up in normalized spectral

clustering, whereas relaxing RCut leads to unnormalized spectral clustering. We will see these variants of

spectral clustering in section 2.2.3. Another important point is that if clusters are well separated, both the

cut criteria give very similar and accurate results, whereas if clusters are marginally separated, NCut pro-

vides more accurate results [32]. The optimal clustering results can be obtained by minimizing the objective

function of the above graph cut methods. However, it is known that finding the global optimum of all these

balanced graph cut criteria is an NP-hard optimization problem, due to its discrete nature. Hence, with the

assistance of spectral methods, the original problem can be solved in polynomial time by relaxing the original

discrete optimization problem to a real domain, and then using some heuristic approach to re-convert it to a

discrete solution. Specifically, the utilization of the eigenvectors of the graph Laplacian matrix approximates

the balanced graph cut, which will be covered in the next subsections.

2.2.2 Similarity and connectivity

In order to apply correctly spectral clustering we firstly have to preprocess our data that is, let X be a set

of n data items, the relationships between the pairs of data items are represented by a weighted undirected

graph Γ = (V, E, W ), where V = {v1, ...,vn} is the set of nodes representing the data items, E is the set of

edges and W is a generalized adjacency matrix. Hence our main goal in the preprocessing part is to create the

adjacency matrix W satisfying (1). It has to be noted that, if in the adjacency matrix the number of connected

components is higher than the number of clusters we need, then spectral clustering will return the connected

components as clusters.

Thus, the first step for creating W is to model the local neighborhood relationships between the data points,

meaning that we have to create the symmetric connectivity matrix G where we connect data points based

on a particular method, which is usually considered as an unweighted graph: the first is the ε-neighborhood

graph where we connect all points whose pairwise distances are smaller than ε, called also Euclidean distance

defined as

d(x,y) =

√

√

√

n
∑

i=1

(xi − yi)2 = ||x− y||, (11)

where x and y being two generic vectors.

The choice of ε is really important, as we have to choose it such that the resulting graph is safely connected.

If we have data on different scales, that is the distances between data points are different in different regions

of the space, it might happen that some points will not have any connection. Therefore, the resulting graph
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will not be connected. A particular technique used for choosing ε is to take the value of the longest edge of

the minimal spanning tree generated from a fully connected graph.

Another technique that defines the way nodes are related is the K-nearest neighbor(kNN) graph where we

connect vertex vi and v j with an undirected edge if vi is among the k-nearest neighbors of v j or if v j is among

the k-nearest neighbors of vi , where the term nearest means the k vertices whose Euclidean distance is the

smallest from a particular vertex. In the resulting graph G, each vertex is connected to at least k vertices.

Here, the choice of the k neighbors in order to have a safely connected graph depends on its size. For small

graphs, trial and error attempts, until it is safely connected; for big graphs, k has to be k ≈ log(n), with n
being the number of points of the dataset. See [26] for more details regarding the selection of k. In cases

where the ε-neighborhood was not able, the kNN, on the other hand, can connect data points that are in a

low-density with points in a high density, and also can break into several disconnected components if there

are high density regions which are reasonably far away from each other.

Lastly, the Mutual k-nearest neighbor (mkNN) graph is a variant of the kNN , where vertices vi and v j are

connected if both vi is among the k-nearest neighbors of v j and v j is among the k-nearest neighbors of vi .

The mkNN works better when there are clusters of different densities, indeed it tends to connect points within

regions of constant density, but does not connect regions of different densities with each other. So the mkNN

graph can be considered as an intermediate version between the ε−neighborhood graph and the kNN [26].
We can infer that the mkNN graph, for the same parameter k, connects less nodes from the kNN. This means

that k for the same graph has to be larger for the mkNN than the standard kNN.

The next step is defining a similarity function on the data, which guarantees that the local neighborhoods

promoted by this similarity function are meaningful. Hence we create the similarity matrix S, where we

compute the degrees of similarity (weights) between every pair of vertices, and study four types of functions

with their respective benefits and drawbacks.

The first we consider is the Gaussian similarity function where data points live in the Euclidean Space IRd,

which is the most suitable and the similarity between every pair of data point. It is computed as:

s(xi ,x j) = exp

�

−
||xi − x j ||2

2σ2

�

. (12)

exp(), with ||xi − x j || being the Euclidean distance between the two data points, and σ controlling the size of

the neighborhood as the ε value in the ε-neighborhood graph. Thus with a fixed parameter σ, the similarity

between two items is only a function of their Euclidean distance and not adaptive to their surroundings,

therefore this procedure is inefficient in proper reflecting the distribution of complex data, like multi-scale

data set [32].
The local scale similarity function is based on handling multi-scale data where the Gaussian similarity mostly

fails. Here, instead of selecting a single scaling parameter σ, we compute a local scaling parameter σi for

each data point xi , indeed the distance from xi to x j as seen by xi is
||xi−x j ||
σi

whereas from x j is
||x j−xi ||
σ j

. The

local scale similarity function between every pair of data point is defined as:

s(xi ,x j) = exp

�

−
||xi − x j ||2

σi ·σ j

�

. (13)

Here, σi stands for the distance between i-th data point and its k-th nearest neighbor:

σi = ||xi − xk||,

with xk being the k’th neighbor of xi . However, this local distance aware similarity cannot reveal the properties

of real clusters and fails on many real world data sets [32]. More details are given in [31].
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The max similarity function is computed between every pair of data points as:

s(xi ,x j) =max{xi( j),x j(i)} where xi( j) = exp

�

−
4 ∗ ||xi − x j ||2

σ2
i

�

; (14)

such that the resulting similarity value is given by one of the two points whose euclidean distance with the

k-th neighbor, given by σi , is bigger. More details are given in the [3].
The last similarity function we consider is the the Common-near-neighbor(CNN), which reflects the local

density between two data points, instead of the other similarities mentioned above. The main idea is that if

two points are distributed in the same cluster, they are in the same region which has a relatively high density,

that is, two points fall into the same cluster because there are many points between them, and the similarity

measure between two data points is defined as follows:

s(xi ,x j) = exp

�

||xi − x j ||2

2σ2 · (CNN(xi ,x j) + 1)

�

, (15)

where CNN(xi ,x j) is the function that counts the number of points in the joint region of the ε-neighborhoods

around points xi and x j , with ε being the radius of the sphere region denoting the ε-neighborhoods of a given

point, and the +1 as a lower bound whenever the CNN’s result is equal to zero. Thus, with the scaled σ

parameter, the new similarity is adaptive to local density. It has an effect of amplifying intra-cluster similarity,

meaning that the bigger the number of CNNs between the two points, the bigger will be the similarity of the

two, making theoretically the adjacency matrix much more block diagonal in order to identify correctly the

clusters. The main issue with this approach is the selection of ε, indeed we mostly choose this value based on

some heuristics. More details about this similarity can be found in [32].
When the connectivity and the similarity matrices are computed for a given dataset the corresponding adja-

cency matrix of the graph reads:

W= S�G, (16)

where the � operator performs element-wise multiplication, resulting in a sparse matrix, which contains the

similarity measures only where G contains elements, therefore only when there is an edge connecting two

nodes satisfying (1).

In order to show the different behavior of the weighted edge distributions from the adjacency matrices com-

puted, the we consider the Outlier dataset [14]:

Figure 1. Scatter plot of Outliers dataset.

Notice that in this case we do not consider the fact that G is connected, as we want to emphasize on the way

the different similarity functions behave on the dataset.
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(a) Gaussian similarity with epsilon-neighborhood. (b) Max similarity with kNN connectivity.

(c) Local scaled similarity with kNN connectivity. (d) CNN with epsilon-neighborhood.

Figure 2. Figure 2a represents the weighted edges using the Gaussian similarity function, Figure 2b the max similarity, Fig-
ure 2c the local scale similarity, and Figure 2d the CNN similarity. An hotter edge color means that the similarity between the
two points is high, whereas a cooler edge color represents a lower one.

2.2.3 The graph Laplacian

The choice of graph Laplacian matrix plays a critical role in spectral clustering. Through the spectrum of the

Laplacian the spectral clustering process is able to split graphs generated from a dataset. In the study we cover

three types of Laplacian: unnormalized Laplacian, and the normalized Laplacian, which itself has two variants

called symmetric and Random-walk Laplacian.

By assuming that Γ = (V, E, W ) is an undirected, weighted graph with adjacency matrix W, the unnormalized

Laplacian is defined as follows:

L= D−W (17)

where D is the degree matrix and W the adjacency matrix, and it satisfies the following properties:

1. L is symmetric, since follows directly from the symmetry of W and D, meaning that its eigenvalues are

real and its eigenvectors are real and orthogonal.

2. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one vector(the vector

of all ones) e= [1, ..., 1]T for which it is true

L · v= λ · v→ L · e= 0 · e= 0

3. L is positive semi-definite, since its eigenvalues, that are also called the spectrum of L, are non-negative:

0= λ1 ≤ λ2 ≤ · · · ≤ λn

indeed for every vector x ∈ IRd the function that maps f : V → IR, is given by the following quadratic

form:

xTLx=
1
2

n
∑

i, j=1

wi j(xi − x j)
2 ≥ 0

where xTLx= 0 only when x is the constant vector one with eigenvalue 0.
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4. The multiplicity k of the eigenvalue 0 of L is equal to the number of connected components in our graph

Γ .

A deeper understanding of these properties can be found in [26]. Notice that when Γ is connected, i.e. we have

one connected component, then λ2 6= 0, which is called algebraic connectivity, whose magnitude indicates how

tightly connected are the nodes in the graph, thus effectively measuring the connectivity of the graph.

The normalized symmetric Laplacian instead is defined as follows:

Lsym = D−1/2LD−1/2 = I−D−1/2WD−1/2, (18)

where L is the unnormalized Laplacian, I is the identity matrix, W is adjacency matrix and D is the degree

matrix which is diagonal, therefore its reciprocal square root D−
1
2 is just the diagonal matrix whose diagonal

entries are the reciprocals of the positive square roots of the diagonal entries of D.

The other normalized Laplacian, the Random-walk Laplacian, is instead defined as follows:

Lrw = I− P where P= D−βW (19)

where P is the transition probability matrix, which re-weights the edges of Γ such that the degree of each node

is equal to 1. The power factor β is a varying parameter whose value affects significantly on the clustering

results [12]. We will see afterwards in 3.2 how much the different values of this factor affects the spectral

clustering results for different datasets. Notice also that from the non-symmetric diffusion matrix P, that is

row-stochastic
∑m

j=1 pi j = 1 whose entries pi j can be viewed as the probability of moving from node vi to node

vj, the resulting Random-walk Laplacian will also be non-symmetric. Both the normalized Laplacian satisfies

the following properties:

1. Both matrices Lsym and Lrw are positive semi-definite, indeed their eigenvalues(the spectrum) are non-

negative:

0= λ1 ≤ λ2 ≤ · · · ≤ λn

in fact for every vector x ∈ IRd the function that maps f : V → IR, is given by the following quadratic

form:

xTLsymx≥ 0

2. Lsym is symmetric, whereas Lrw is not.

3. The smallest eigenvalue of both is 0, and the corresponding eigenvector of eigenvalue 0 for Lsym is D1/21
with 1 being the constant vector one, whereas for Lrw is just the constant vector one.

4. As in the unnormalized version, the multiplicity k of the eigenvalue 0 of the normalized graph Laplacian

is related to the number of connected components.

Once more we refer to [26] for a detailed analysis of these properties.

Let us consider an undirected, weighted graph Γ = (V, E, W ) and compute the different Laplacian derived from

it:
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1

2

3

4
2

4
2

2

2

The relative adjacency W and degree D matrices are the following:

W=











0 2 2 0

2 0 4 2

2 4 0 2

0 2 2 0











D=











4 0 0 0

0 8 0 0

0 0 8 0

0 0 0 4











Hence the unnormalized Laplacian matrix is given by:

L= D−W=











4 0 0 0

0 8 0 0

0 0 8 0

0 0 0 4











−











0 2 2 0

2 0 4 2

2 4 0 2

0 2 2 0











=











4 −2 −2 0

−2 8 −4 −2

−2 −4 8 −2

0 −2 −2 4











Then the normalized symmetric Laplacian matrix is of the form:

Lsym = D−1/2LD−1/2 =











1
2 0 0 0

0 1
2
p

2
0 0

0 0 1
2
p

2
0

0 0 0 1
2











·











4 −2 −2 0

−2 8 −4 −2

−2 −4 8 −2

0 −2 −2 4











·











1
2 0 0 0

0 1
2
p

2
0 0

0 0 1
2
p

2
0

0 0 0 1
2











=

=











1 − 1
2
p

2
− 1

2
p

2
0

− 1
2
p

2
1 − 1

2 − 1p
2

− 1
2
p

2
− 1

2 1 − 1
2
p

2

0 − 1p
2
− 1

2
p

2
1











And the normalized Random-walk Laplacian is:

Lrw = I−D−1W= I− P=











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











−











1
4 0 0 0

0 1
8 0 0

0 0 1
8 0

0 0 0 1
4











·











0 2 2 0

2 0 4 2

2 4 0 2

0 2 2 0











=











1 − 1
2 − 1

2 0

− 1
4 1 − 1

2 − 1
4

− 1
4 − 1

2 1 − 1
4

0 − 1
2 − 1

2 1











By recalling 2.2.1, the min-cut criteria does not always give good results, therefore we want our solutions

to be balanced, and this can be achieved by using RCut or NCut. But adding balancing conditions makes

our problem NP-hard, therefore the spectral clustering process makes use of the Laplacian’s eigenvectors in

order to approximate the graph balanced cut, that it is relaxing the original discrete optimization problem and

solve it in polynomial time. Based on the Fiedler vector, that is the eigenvector corresponding to the second

eigenvalue λ2, we can divide our graph in two parts, or based on multiple k main eigenvectors, we can divide
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the graph into k parts. This is basically the process of solving the eigenvalue problem for a given matrix, that

is in our case the Laplacian.

We demonstrate hereby how the approximation of the RCut between two clusters work, which is the simplest

one; the main goal is to solve the following minimization problem:

min
C⊂V

RCut(C , C) =min
C ,C

1
2

�

cut(C , C)
|C |

+
cut(C , C)

|C |

�

(20)

where we consider only two clusters, C and its complement C . We are looking for a vector x such that

minimizing the RCut(C , C) is the same as minimizing xTLx, that is the unnormalized graph Laplacian, subject

to some constraints. Hence given the subset C ⊂ V , where V is the set of the nodes of our initial graph, we

define the vector x= (x1, ..., xn)T ∈ IRn with the following entries:

x i =







r

|C |
|C | i f vi ∈ C

−
r

|C |
|C |

i f vi ∈ C
(21)

We can now express our objective function in terms of the graph Laplacian:

xTLx= xTDx− xTWx=
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∑
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|V | ·RCut(C , C) = xTLx (22)

Thus, minimizing the RCut is the same as minimizing xTLx subject to the following constraints:

1.
∑n

i=1 x i = 0→ x ⊥ 1, i.e. x is orthogonal to the constant vector one

2. ||x||2 = n= |V |, that is x measures the cardinality of the graph.

3. x i takes discrete values, as stated in (21).

This is still a discrete optimization problem, due to the entries x i of the solution vector x which is therefore

still NP-hard. Hence a solution to obtain a relaxed optimization problem is achieved by allowing x i to attain

arbitrary values in IR, therefore our problem assumes the following form:

min
x∈IR

xTLx subject to x⊥ 1, ||x||2 = n (23)

The Rayleigh-Ritz (RR) theorem indicates that the solution of this minimization problem is given by the Fiedler

eigenvector, the eigenvector corresponding to the 2nd smallest eigenvalue of L, since the smallest eigenvalue

of L, which is positive-definite, is 0 corresponding to the constant vector of ones. But we have to transform

approximate solution back to its discrete setting, in order to obtain a partition of our graph. Following an
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heuristic approach, the spectral clustering algorithm makes the coordinates x i as points in IR, and cluster

them into two groups A and A with a flat clustering algorithm which will be k-means in our study, due to its

simplicity and efficiency. The clustering results are then associated with the underlying data points:

(

vi ∈ C i f x i ∈ A

vi ∈ C i f x i ∈ A

This shows that we can approximate RCut by using the second eigenvector of L when dealing with two clusters,

which indeed translates into the fact that the min-cut problem can be solved by an eigen-decomposition of the

Laplacian matrix in polynomial time.

Following this proof it is possible to use similar arguments to show that solving minRCut for k > 2 corresponds

to finding the first k eigenvectors of L, and also for the minNCut, in which case we deal with a normalized

Laplacian.

2.2.4 Final clustering of the eigenvectors

Classical flat clustering algorithms, such as k-means, cluster the dataset based only on the euclidean distances

between data points (on their topological features) and do not take into account the different densities of

each cluster. Hence such methods tend to fail on much more complex datasets. On the other hand, spectral

clustering overcomes these difficulties by mapping each point to a lower-dimensional representation based

on one or more eigenvectors of the derived Laplacian, depending on the number of clusters it needs. Then

it partitions the dataset by applying the k-means algorithm on this new lower-dimensional representation,

which is faster to compute, leading into an approximate solution to the layout problem and giving much more

visual information, since the clusters are easier to detect.

Let us consider the finite element mesh 3elt, originating from aeronautics applications. We visualize its nodal

coordinates and its eigenvector coordinates where we locate the vertex i at position xi = (v2(i),v3(i)), with

v2,v3 being the eigenvectors corresponding to the 2nd and 3rd smallest eigenvalues of the Laplacian:

Figure 3. The figure on the left is the nodal coordinates representation, whereas the one to the right, the eigenvector
coordinates representation.

One can see, if we apply directly k-means on the nodal coordinates, it is much more difficult to obtain good

results, due to regions of varying density. Whereas, applying on the new space represented by the eigenvec-

tors, the clusters are more separated. Therefore k-means will perform better since the cluster-properties in
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the data are enhanced.

In the remainder of this subsection we provide the full spectral clustering pseudocode depending on the dif-

ferent Laplacian, based mostly on [26]; here, as input, we consider our dataset to have n data points with d
features, and k being the number of clusters we want to separate:

Algorithm 1 Unnormalized spectral clustering

Input: Data points Pts ∈ IRn×d and k as the number of cluster we want

Output: Clusters;

1: Construct the connectivity matrix G ∈ IRn×n and the similarity matrix S ∈ IRn×n;

2: Compute the adjacency sparse matrix W ∈ IRn×n given by W= S�G;

3: Compute the unnormalized Laplacian L= D−W;

4: Compute the first k eigenvectors x1, ...,xk, corresponding to the k smallest eigenvalues of L, by solving the

eigenvalue problem Lx= λx;

5: Let X ∈ IRn×k be the matrix having as column vectors x1, ...,xk

X=







x11 . . . x1k
...

. . .
...

xn1 . . . xnk







6: For i = 1, ..., n let yi ∈ IRk be the vector corresponding to the i-th row of X;

7: Cluster the n rows yi with the flat k-means algorithm into Clusters C1, ..., Ck;

Algorithm 2 Normalized spectral clustering with symmetric Laplacian

Input: Data points Pts ∈ IRn×d and k as the number of cluster we want

Output: Clusters;

1: Construct the connectivity matrix G ∈ IRn×n and the similarity matrix S ∈ IRn×n;

2: Compute the adjacency sparse matrix W ∈ IRn×n given by W= S�G;

3: Compute the unnormalized Laplacian L and therefore the relative normalized symmetric Laplacian Lsym =
D−1/2LD−1/2;

4: Compute the first k eigenvectors x1, ...,xk, corresponding to the k smallest eigenvalues of Lsym, by solving

the eigenvalue problem Lsymx= λx;

5: Let X ∈ IRn×k be the matrix having as column vectors x1, ...,xk;

6: For i = 1, ..., n, cluster the n rows yi ∈ IRk, that are the vectors corresponding to the i-th row of X, with the

flat k-means algorithm into Clusters C1, ..., Ck;
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Algorithm 3 Normalized spectral clustering with symmetric Random-walk Laplacian

Input: Data points Pts ∈ IRn×d and k as the number of cluster we want

Output: Clusters;

1: Construct the connectivity matrix G ∈ IRn×n and the similarity matrix S ∈ IRn×n;

2: Compute the adjacency sparse matrix W ∈ IRn×n given by W= S�G;

3: Compute the unnormalized Laplacian L = D−W and therefore the relative normalized Random-walk

Laplacian Lrw = I− P where P= D−βW is the transition probability matrix(diffusion matrix);

4: Compute the first k eigenvectors x1, ...,xk, corresponding to the k smallest eigenvalues of Lrw, by solving

the eigenvalue problem Lrwx= λx;

5: Let X ∈ IRn×k be the matrix having as column vectors x1, ...,xk;

6: For i = 1, ..., n, cluster the n rows yi ∈ IRk, that are the vectors corresponding to the i-th row of X, with the

flat k-means algorithm into Clusters C1, ..., Ck;
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3 Optimal spectral clustering for machine learning applications

We now consider the application of an optimal spectral clustering configuration in machine learning tasks.

One of the critical elements for choosing the best spectral clustering setup is the selection of appropriate met-

rics in order to evaluate the quality of the results.

Initially, we consider some artificial datasets, with known labels, and evaluate on them the effectiveness of

different similarity graph configurations, as outlined in 2.2.2. Details regarding the parameter selection for

these configurations are offered in Section 3.1.1. The metrics we use to evaluate the quality of the cluster-

ing results is the clustering accuracy (ACC), and the ratiocut (RCut, (9)) between the different results. The

accuracy is defined following [17]:

ACC=

∑n
i=1 δ(li ,map(ci))

n
, (24)

where n is the number of points of the dataset, li is the true class label and ci the inferred cluster label of

x i , which is the clustering result. The delta function δ(x , y) is defined as: δ(x , y) = 1, is x = y , otherwise

δ(x , y) = 0. The mapping function map(·) assigns the true label on the inferred label with the most frequent

hits within the cluster. Therefore, ACC ∈ [0,1] is a metric indicating the predicting accuracy of a clustering

algorithm, with values ACC≈ 1 corresponding to a perfect clustering result.

We seek the configuration that gives the highest accuracy, and the best minimization of Rcut as defined in (20).

Subsequently, we choose the best graph Laplacian configuration, which will be part of the optimal spectral

clustering. In particular, during this phase we evaluate the results on two more metrics along with ACC and

RCut. The normalized cut (Ncut, see (10)) criteria, and the modularity (MOD), whose maximization is

one of the most widely used methods for community or cluster detection [12], and it is computed following

Newman-Girvan’s proposal [18]:

MOD=
∑

i



dii −

 

∑

j

di j

!2


 , (25)

which takes a symmetric matrix of clusters and each element di j represents the degree of the edges that link

nodes between clusters i and j; each dii represents the degree of the edges linking nodes within cluster i.

3.1 Graph creation

During the first phase of testing, we evaluate the datasets on the ACC and RCut by using three different graph

constructions, i.e creating (16):

1. Eps-Gauss configuration; as G we use the epsilon-neighborhood connectivity function introduced in sec-

tion 2.2.2, and as S we use the Gaussian similarity function defined in (12).

2. kNN-Max configuration; as G we use the kNN connectivity function introduced in section 2.2.2, and as

S we use the Max similarity function defined in (14).

3. Eps-Cnn configuration; as G we use the epsilon-neighborhood connectivity function, and as S we use the

CNN similarity function defined in (15).

3.1.1 Parameter selection

In order to ensure the connectivity of the graph constructed from the datasets, we decide to take the values

of ε for the Eps-Gauss and Eps-Cnn configurations following heuristics used in [26]:

ε= log(n). (26)
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The choice of k, that is the number of neighbors in the kNN graph similarity, is based on trial and error attempts

by increasing the k value until connectivity is guaranteed [27]. The effective choice of these parameters

remains an open research problem [26]. In what follows, we measure the performance and accuracy of the

above mentioned graph construction techniques in a series of artificial datasets, introduced in [8].

3.1.2 Generated three-kernels dataset

The first artificial dataset we test is the generated three-kernels dataset in Figure 4, a modified and slightly

complex version of the two-kernels in [14]. The three-kernels dataset and the weight plots are presented

in Figure 4:

(a) Scatter plot. (b) Eps-Gauss weights-plot.

(c) kNN-Max weights-plot. (d) Eps-Cnn weights-plot.

Figure 4. Figure 4a shows the shape of the dataset, whereas Figure 4b, Figure 4c, and Figure 4d, the edge weights of the
different adjacency matrices using the three configurations in 3.1. The edge weights are mapped to a colormap, represented
by the bar plot below each figure, with values ranging from 0 (blue color) to 1 (red color).

It is worth noting that at Figure 4b and Figure 4d, whose connectivity function is the same, through the use of

the CNN similarity measure (15) the weights of the edges in the same density kernel are increased from the

first one which uses the Gaussian similarity (12).

In order to evaluate the optimal configuration for the given dataset in an efficient way, we test the three-kernels

by progressively increasing the problem size for the three different strategies. Nine runs on the dataset have

been made, with the number of points ranging from 600 to 2400 with a step size of 225. At every iteration we

compute the adjacency matrices for the three configurations. Moreover, by running a total of 10 k-means runs

on the K smallest eigenvectors of the unnormalized Laplacian we compare the clustering results on the average

of both the ACC (24) and the Rcut (20) for each of them, shown respectively in Figure 5a and Figure 5b.

In order to guarantee the connectivity, we set epsilon following (26) when dealing with the ε-neighborhood,

whereas the number of neighbors k for the kNN case is set to k = 20; we take this choice based on the common

k value that guarantees connectivity for the smallest and biggest problem size in our evaluation. Our results

are summarized in Figure 5:
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(a) ACC for an increasing problem size. (b) RCut for an increasing problem size.

Figure 5. Results in Figure 5a and Figure 5b, show that the kNN-Max configuration performs better. On the average, the
ACC is consistently greater than the other two configurations, and the value of the Rcut is better minimized following (20).

3.1.3 Artificial datasets

We proceed by comparing the performance of ACC and RCut on a series of publicly available artificial datasets,

commonly used in the machine learning community (see Figure 6). We follow the same evaluation procedure

(a) Aggregation [1] (b) Compound [30]

(c) Flame [9] (d) Jain [13] (e) Pathbased [4]

(f) R15 [6] (g) Spirals [6]

Figure 6. Scatter plots of the artificial datasets [8] used in the numerical experiment.

applied in section 3.1.2. Since in this phase each dataset is already generated, we can not change the prob-

lem size. To guarantee the connectivity, we set once more epsilon following (26) when dealing with the

ε-neighborhood. However, the heuristic choice of epsilon did not generate meaningful results, therefore it

involved a process of trial and errors for obtaining the optimal epsilon value.

The k for the kNN case also involves trial-and-error attempts for the different problems. In particular, we are

interested in finding the minimum k in kNN, in order to get a sparse connected graph that permits quicker

and more accurate computations. These procedure results in k value set to k = 8 for the Spiral dataset,

k = 20 for the Compound, Flame, Jain, Pathbased problems, and k = 40 for the Aggregation and R15 ones.

The results are presented in Table 1 and Table 2. The first showing the ACC for each problem with the three
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configurations, and the RCut for the second:

Table 1. For each row, on the left hand side of the central column, we have the problem tested, with its number of nodes
and clusters. On the right hand side we have the ACC (24) computed on the different graph configurations introduced in
section 3.1. Each measure gives an ACC value ∈ [0, 1], where ACC ≈ 1 is a perfect clustering result.

Problem Nodes Clusters Eps-Gauss kNN-Max Eps-Cnn

Aggregation 788 7 0.9909 0.9673 0.9949

Compound 399 6 0.8381 0.8005 0.8135

Flame 240 2 0.6417 0.8258 0.6417

Jain 373 2 0.8123 0.7694 0.8123

Pathbased 300 3 0.7467 0.7843 0.7467

R15 600 15 0.5133 0.9722 0.4980

Spirals 312 3 0.3756 0.7673 0.3788

Table 2. For each row, on the left hand side of the central column, we have the problem tested, with its number of nodes
and clusters. On the right hand side we have the RCut (9) computed on the different graph configurations introduced in
section 3.1.

Problem Nodes Clusters Eps-Gauss kNN-Max Eps-Cnn

Aggregation 788 7 19.9625 6.1911 16.4231

Compound 399 6 22.9116 4.0713 20.6457

Flame 240 2 8.6180 0.6552 8.9985

Jain 373 2 0.6052 0.2311 0.6341

Pathbased 300 3 2.1485 1.4283 2.2456

R15 600 15 293.5543 12.1285 303.6924

Spirals 312 3 8.8360 0.1629 8.9356

As in the case of the three-kernels dataset (see Figure 5a and Figure 5b), we notice in Table 1 that the kNN-

Max outperforms in terms of ACC on the other two configurations, and in Table 2 it dominates in terms of

Rcut minimizations. In the 58% of the cases, the ACC with kNN-Max is higher than the other two, and in the

100% of the cases, the RCut with kNN-Max is smaller. The percentages given, are computed by counting the

best configuration in every dataset. Moreover, if two entries are equal, then every configuration gets half of

the point gained, and a third if three entries are the same. In general, we can define ck as the number of times

configuration k has been the best one.

ck =
23
∑

i=1

ι(yik = ŷi)

mi
, (27)

where yik is the score we get on dataset i with configuration k, ŷi is the maximum score for dataset i, that is

ŷi = max
k∈{1,...,K}

yik , (28)

mi is the number of configurations giving a scores which is equal to ŷi on dataset i, and ι(yik = ŷi) is an

indicator variable that equals to 1 if yik = ŷi and 0 otherwise.

In particular, one can notice that, when a dataset has clusters with high-variation of distances among them

(e.g the R15 [6]), that is the distances between data points are different in different regions of the space [26],
the construction of the similarity graph using the ε-neighborhood technique fails in terms of RCut. This is

due to the fact that, for preserving the connectivity of the graph, one needs an high epsilon value, which will
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hinder the clustering process, because it will result into a fully connected graph, hence the adjacency matrix

will not have a clear block diagonal structure.

Therefore, it seems reasonable to use as first choice the kNN-Max configuration, since is apparent from the

result that it is the most robust configuration.

3.2 Evaluating the performance of different graph Laplacians

With the results obtained in sections 3.1.2 and 3.1.3, the best spectral clustering configuration is the kNN-

Max (see section 3.1), since it outperforms on average the other two. Therefore, we utilize it as a graph

construction method in order to evaluate the performance of the different graph Laplacian configurations. We

measure the effectiveness of each graph Laplacian variant based on the values of accuracy (24), Ratio cut (9),

Normalized cut (10) and modularity (25). As stated in 2.2.3, one can distinguish three different Laplacian

forms:

1. Unnormalized Laplacian (UL), defined in (17).

2. Normalized Symmetric Laplacian (NSL), defined in (18).

3. Normalized Random Walk Laplacian (RWL), defined in (19).

For RWL the beta factor equals to β = 1, and corresponds to the regular spectral analysis as outlined in [12].
Hence, we distinguish in our evaluation another type of Laplacian that we call Random Walk Beta Lapla-

cian (RWBL), for which we will include the best resulting beta for each dataset in terms of modularity, for

β ∈ [1.1,1.9] with step β = β +∆β , with ∆β = 0.1. We know, from [26], that finding the eigenvectors of

the unnormalized Laplacian, corresponds to a minimization of the RCut, and finding the eigenvectors of the

normalized Laplacian, leads to a minimization of the NCut. Therefore, for a fair comparison, to determine the

best RWBL configuration, and compare it with the other setups, we select modularity in order to determine

the best beta β value for each dataset.

3.2.1 Laplacian Selection

In the final phase of testing, we run our numerical experiments on a total of 23 datasets. We consider once

more the shape sets from [8], and moreover we evaluate real-life datasets used in machine learning studies

from the OpenML 1 database [25]. These datasets have ground-truth labels, and describe a variety of clustering

tasks. The objective is to group accurately different objects in classes according to their labels. Some examples

of these datasets are depicted in Figure 7.

Initially, we compute the adjacency matrix generated using the kNN-Max’s configuration (see section 3.1) for

all the datasets, with different values of k in order to guarantee a connected graph. Subsequently, we measure

the ACC, the RCut, the Ncut, and the MOD for the various Laplacians.

We organize the datasets in three sets:

1. Artificial [8] test case (ATS) .

2. Small (< 5000 nodes) openML test case (SOTS).

3. Big (> 10000 nodes) openML test case (BOTS).

1https://www.openml.org/
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(a) Fashion-MNIST (b) KMNIST

(c) USPS (d) Glass Identification

Figure 7. Some examples of the datasets used in machine learning applications. Figure 7a represents the Fashion-MNIST, that
is a dataset of Zalando’s article images [28].; Figure 7b, represents the the Kuzushiji-MNIST (KMNIST) dataset, which includes
characters in Hiranaga, based on pre-processed images of characters from 35 books from the 18th century [23]; Figure 7c,
shows the USPS dataset, which refers to numeric data obtained from the scanning of handwritten digits from envelopes by
the U.S. Postal Service [11]; Figure 7d, represents the Glass Identification database, whose study of classification of types of
glass was motivated by criminology’s investigation [7].

The tables in Appendix B show the ACC Table 3, Rcut Table 4, NCut Table 5 and MOD Table 6 for the different

test cases respectively. In Figure 8 we summarize our results with a comparative study between the different

Laplacian configurations for each of the metrics considered.
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(b) Ratio cut (RCut)

UL NSL RWL RWBL

20

25

30

23

19

27

31

Laplacian configuration

N
um

be
r

of
be

st
re

su
lt

s
(%

)

(c) Normalized cut (NCut)
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(d) Modularity (MOD)

Figure 8. The percentage of occurrences that every Laplacian configuration performed the best, for each considered metric,
over the 23 datasets. Figure 8a shows the best configuration with respect to ACC, based on the results in Table 3; Figure 8b,
shows the best configuration with respect to RCut, based on the results in Table 4; Figure 8c, shows the best configuration
with respect to NCut, based on the results in Table 5; Figure 8d, the best configuration with respect to MOD, based on the
results in Table 6.
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One can notice that, in Figure 8a the ACC in the 45% of the cases with the RWBL is the highest. From Figure 8b

and Figure 8c we can confirm that normalized spectral clustering leads to a minimization of the Ratio cut,

while its normalized counterpart to a minimization of the Normalized cut [26]. Indeed, in the 49% of the

cases, the UL configuration gives better RCut minimization, whereas the RWBL and RWL in the 31% and

27% respectively gives NCut smaller values. From Figure 8d, we can confirm that the beta factor plays an

important role in the spectral clustering results [12]. In 50% of the cases, the modularity computed for each

dataset using the RWBL is the highest. Notice also that we compute the percentages following (27) when

dealing with the best similarity graph configuration.

From these results we can infer that the Random Walk Beta Laplacian with a varying β factor (19), with

the kNN-Max (see section 3.1) similarity graph, performs the best on average. It is the spectral clustering

configuration which outperforms the rest in terms of accuracy and modularity maximization, while at the

same time minimizes efficiently the Normalized cut, for datasets of different shapes and properties.

21



4 Conclusion and future work

In this work, we have been focusing on conducting experiments in a wide variety of graphs emerging from

artificial and real-life machine learning datasets. We conduct a study on artificial graphs with a varying size

and shape (see sections 3.1.2 and 3.1.3) in order to choose the best graph creation routine, and observe

that the similarity graph construction is crucial to the performance of spectral clustering (see section 3.1).

Moreover, the selection of good parameters (see section 3.1.1) to tune the clustering process cumbersome and

requires a heuristics approach together with trial and error attempts in order to guarantee the connectivity

and sparsity of the graph. The type of graph Laplacian (see section 3.2) selected is identified as the key point

of the spectral clustering routine. Numerical experimental on both artificial datasets and datasets emerging

from machine learning applications show that the proposed RWBL, with the kNN-Max graph configuration,

outperforms UL, NSL, RWL. Our study is based on various evaluation metrics (see section 3), in an effort to

present a thorough and detailed comparison.

For future work, we want to:

1. Cluster datasets without labels with the best setup that we found, i.e the RWBL with the kNN-Max graph

configuration.

2. Find meaningful communities in complex networks, such as Social and Protein-Protein interaction Net-

works. Particularly attractive is the application in Power Law Graphs,

3. The CNN (15) similarity function, is suggested as the best approach in [32], and this was not justified

in our research. Therefore, we want find the scenarios in which CNN would be the optimal graph

construction method.

4. Transfer the project in a more performant programming language, i.e C, where we can optimize freely

the code.
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A The project in a nutshell

A.1 Project requirements and challenges

The main goal in this study is finding meaningful communities in machine learning applications. In order

to achieve this, we select the best graph constructions, based on connectivity and similarity functions for

capturing the real similarities and differences of the nodes, by using spectral clustering techniques. Then we

select appropriate quality metrics for the final results.

However, the unique nature of spectral clustering posed also some challenges in achieving the desired results.

These are the issues we will face in our study:

1. Finding the most suitable similarity and connectivity functions, since capturing the true similarities and

differences between data points for different datasets is quite challenging.

2. Finding the best graph Laplacian to work on, since we have no general rule on choosing which Laplacian

matrix is the most appropriate.

A.2 Technologies used

In order to apply these spectral clustering techniques, we have to choose firstly the programming language

which enable us to work easily with the different datasets. During our study, we need to visualize the results

in a fashionable way, retrieve features of dataset easily, and performs matrix/vector operations efficiently

for our algorithms. Therefore the most obvious choice is Matlab, because it is an optimized language for

technical computing. It integrates computation, visualization (for example high-level commands for two-

dimensional and three-dimensional data visualization,), and programming in an easy-to-use environment. It

includes facilities for managing the variables in our work-space and importing and exporting data. It also

includes tools for developing, managing, debugging, and profiling, i.e testing efficiency of algorithms.

A.3 Timeline

The first thing we did during the first meeting was planning the entire workflow for the project. Thereby we

decided to divide the workload in weeks:

1. Week 1 - 3: Study of different similarity and connectivity functions between data points and implemen-

tation on Matlab. Start the report.

2. Week 3 - 5: Study of different graph Laplacian and creation of them from adjacency matrix based on

similarity and connectivity, and report writing.

3. Week 5 - 6: Selecting appropriate metrics to evaluate the final result, and report writing.

4. Week 6 - 8: Final clustering step on the spectral coordinate space, and report writing.

5. Week 8 - 10: Application to machine learning datasets, and report writing.

6. Week 10 - 12: Optimize the code and finalizing the report.
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B Results

Table 3. Each block of the table shows the ACC results for problems of different test cases, and for each row, on the left hand
side of the table, we have the name of the problem tested, with its number of nodes and clusters. On the right hand side
we have the ACC (24) computed on the different Laplacian configurations introduced in section 3.2. Each measure gives an
value ∈ [0,1], with ACC ≈ 1 is a perfect spectral clustering result.

ACC

Test case Problem Nodes Clusters UL NSL RWL RWBL

ATS Aggregation 788 7 0.9797 0.9886 0.9797 0.9530 (β = 1.1)

Compound 399 6 0.8296 0.8321 0.8296 0.8321 (β = 1.5)

Flame 240 2 0.8208 0.8125 0.8125 0.8125 (β = 1.1)

Jain 373 2 0.7694 0.7748 0.7694 0.7694 (β = 1.9)

Pathbased 300 3 0.7833 0.7800 0.7800 0.7833 (β = 1.3)

R15 600 15 0.9917 0.9933 0.9900 0.9950 (β = 1.2)

Spirals 312 3 0.7660 0.7724 0.7660 0.8526 (β = 1.6)

SOTS Binaryad 1404 36 0.5036 0.4067 0.4772 0.4067 (β = 1.2)

Ecoli 336 8 0.8304 0.8274 0.8244 0.8244 (β = 1.1)

Glass 214 6 0.5841 0.5888 0.6028 0.5935 (β = 1.3)

Iris 150 3 0.9067 0.9000 0.9067 0.9067 (β = 1.2)

Mice 1077 8 0.4308 0.3909 0.4067 0.4717 (β = 1.1)

Olivetti 400 40 0.6125 0.6550 0.6275 0.6775 (β = 1.3)

Plants 1600 100 0.4831 0.4625 0.4913 0.4850 (β = 1.4)

Spectro 531 48 0.5706 0.5631 0.5593 0.5593 (β = 1.1)

UMIST 575 20 0.6104 0.5739 0.5913 0.5983 (β = 1.7)

Vehicle 846 4 0.4586 0.4740 0.4740 0.4811 (β = 1.4)

Yeast 1484 12 0.5364 0.5256 0.5391 0.5512 (β = 1.8)

BOTS Fashion 10000 10 0.6009 0.5964 0.5994 0.5984 (β = 1.1)

Kmnist 10000 10 0.4044 0.4056 0.4179 0.4298 (β = 1.6)

MNIST 10000 10 0.6859 0.6885 0.6877 0.7040 (β = 1.1)

Pendigits 10992 10 0.7962 0.8006 0.8004 0.8237 (β = 1.6)

USPS 11000 10 0.6327 0.6039 0.6085 0.5975 (β = 1.6)
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Table 4. Each block of the table shows the RCut results for problems of different test cases, and for each row, on the left hand
side of the table, we have the name of the problem tested, with its number of nodes and clusters. On the right hand side we
have the RCut (9) computed on the different Laplacian configurations introduced in section 3.2.

RCut

Test case Problem Nodes Clusters UL NSL RWL RWBL

ATS Aggregation 788 7 5.2148 4.1757 5.2148 6.4479 (β = 1.1)

Compound 399 6 3.2400 3.1847 3.2091 3.1567 (β = 1.5)

Flame 240 2 0.6469 0.6435 0.6435 0.6435 (β = 1.1)

Jain 373 2 0.2311 0.2575 0.2311 0.2311 (β = 1.9)

Pathbased 300 3 1.4228 1.4597 1.4404 1.4228 (β = 1.3)

R15 600 15 7.3916 7.5810 8.0550 7.0439 (β = 1.2)

Spirals 312 3 0.1467 0.1554 0.1467 0.2047 (β = 1.6)

SOTS Binaryad 1404 36 4.0359 5.6116 4.4036 5.0669 (β = 1.2)

Ecoli 336 8 0.8089 0.9332 0.8249 0.8116 (β = 1.1)

Glass 214 6 0.4677 0.4866 0.4291 0.4292 (β = 1.3)

Iris 150 3 0.6987 0.6246 0.6987 0.6987 (β = 1.2)

Mice 1077 8 0.1037 0.1884 0.0872 0.1169 (β = 1.1)

Olivetti 400 40 6.4453 7.7264 7.0043 6.9223 (β = 1.3)

Plants 1600 100 18.9317 22.4580 19.5665 21.3464 (β = 1.4)

Spectro 531 48 10.2185 12.2537 11.7630 11.9475 (β = 1.1)

UMIST 575 20 1.4178 1.3557 1.3131 1.4466 (β = 1.7)

Vehicle 846 4 0.0781 0.0515 0.0445 0.0789 (β = 1.4)

Yeast 1484 12 7.0115 7.2757 7.1817 8.2145 (β = 1.8)

BOTS Fashion 10000 10 0.2478 0.2938 0.2507 0.2616 (β = 1.1)

Kmnist 10000 10 0.3402 0.4240 0.3429 0.3944 (β = 1.6)

MNIST 10000 10 8.4066 8.6070 8.4855 9.2056 (β = 1.1)

Pendigits 10992 10 0.1228 0.0933 0.1013 0.1048 (β = 1.6)

USPS 11000 10 0.7982 0.9132 0.8667 0.8789 (β = 1.6)
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Table 5. Each block of the table shows the NCut results for problems of different test cases, and for each row, on the left hand
side of the table, we have the name of the problem tested, with its number of nodes and clusters. On the right hand side we
have the NCut (10) computed on the different Laplacian configurations introduced in section 3.2.

NCut

Test case Problem Nodes Clusters UL NSL RWL RWBL

ATS Aggregation 788 7 0.2182 0.1742 0.2182 0.3063 (β = 1.1)

Compound 399 6 0.3377 0.3317 0.3343 0.3287 (β = 1.5)

Flame 240 2 0.0699 0.0695 0.0695 0.0695 (β = 1.1)

Jain 373 2 0.0234 0.0261 0.0234 0.0234 (β = 1.9)

Pathbased 300 3 0.1365 0.1392 0.1380 0.1365 (β = 1.3)

R15 600 15 0.3128 0.3212 0.3400 0.2980 (β = 1.2)

Spirals 312 3 0.0374 0.0396 0.0374 0.0524 (β = 1.6)

SOTS Binaryad 1404 36 9.1447 7.9539 8.6083 7.8923 (β = 1.2)

Ecoli 336 8 0.6403 0.7100 0.6463 0.6362 (β = 1.1)

Glass 214 6 0.3488 0.2791 0.2599 0.2597 (β = 1.3)

Iris 150 3 0.1008 0.0897 0.1008 0.1008 (β = 1.2)

Mice 1077 8 0.0607 0.1072 0.0498 0.0696 (β = 1.1)

Olivetti 400 40 11.6204 10.1723 9.3445 9.2189 (β = 1.3)

Plants 1600 100 23.0591 20.2876 19.6536 20.9721 (β = 1.4)

Spectro 531 48 16.1534 14.3321 14.0712 15.0996 (β = 1.1)

UMIST 575 20 1.0506 0.9195 0.9221 0.9876 (β = 1.7)

Vehicle 846 4 0.0796 0.0468 0.0394 0.0810 (β = 1.4)

Yeast 1484 12 2.0827 2.1336 2.1289 2.4186 (β = 1.8)

BOTS Fashion 10000 10 0.5154 0.6078 0.5214 0.5234 (β = 1.1)

Kmnist 10000 10 0.7894 0.9676 0.7873 0.9181 (β = 1.6)

MNIST 10000 10 0.9004 0.9208 0.9084 0.9848 (β = 1.1)

Pendigits 10992 10 0.0578 0.0438 0.0483 0.0505 (β = 1.6)

USPS 11000 10 0.7319 0.8180 0.7853 0.7946 (β = 1.6)
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Table 6. Each block of the table shows the MOD results for problems of different test cases, and for each row, on the left hand
side of the table, we have the name of the problem tested, with its number of nodes and clusters.. On the right hand side
we have the MOD (25) computed on the different Laplacian configurations introduced in section 3.2. Each measure gives a
modularity value MOD ∈ [0,1], where MOD≈ 1 is the highest modularity.

MOD

Test case Problem Nodes Clusters UL NSL RWL RWBL

ATS Aggregation 788 7 0.7843 0.7843 0.7843 0.8017 (β = 1.1)

Compound 399 6 0.7410 0.7418 0.7415 0.7423 (β = 1.5)

Flame 240 2 0.4632 0.4623 0.4623 0.4623 (β = 1.1)

Jain 373 2 0.4883 0.4868 0.4883 0.4883 (β = 1.9)

Pathbased 300 3 0.5901 0.5858 0.5885 0.5901 (β = 1.3)

R15 600 15 0.9133 0.9129 0.9116 0.9143 (β = 1.2)

Spirals 312 3 0.5808 0.5845 0.5808 0.6490 (β = 1.6)

SOTS Binaryad 1404 36 0.7314 0.6873 0.7187 0.7336 (β = 1.2)

Ecoli 336 8 0.7756 0.7692 0.7740 0.7755 (β = 1.1)

Glass 214 6 0.7540 0.7146 0.7240 0.7243 (β = 1.3)

Iris 150 3 0.6229 0.6252 0.6229 0.6229 (β = 1.2)

Mice 1077 8 0.7549 0.6990 0.7163 0.7558 (β = 1.1)

Olivetti 400 40 0.7332 0.7136 0.7235 0.7369 (β = 1.3)

Plants 1600 100 0.8141 0.7784 0.8132 0.8089 (β = 1.4)

Spectro 531 48 0.7522 0.7108 0.7200 0.7208 (β = 1.1)

UMIST 575 20 0.8860 0.8918 0.8896 0.8852 (β = 1.7)

Vehicle 846 4 0.6985 0.6564 0.6586 0.6681 (β = 1.4)

Yeast 1484 12 0.6991 0.6912 0.6950 0.6940 (β = 1.8)

BOTS Fashion 10000 10 0.8230 0.8152 0.8227 0.8230 (β = 1.1)

Kmnist 10000 10 0.7107 0.7181 0.7179 0.7342 (β = 1.6)

MNIST 10000 10 0.7851 0.7900 0.7912 0.7947 (β = 1.1)

Pendigits 10992 10 0.8594 0.8640 0.8632 0.8671 (β = 1.6)

USPS 11000 10 0.7897 0.7816 0.7849 0.7828 (β = 1.6)
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