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Motivation

• Clustering is one of the main techniques in exploratory data analysis

• Clustering problem can be rewritten as a graph partitioning problem

• Solving balanced metric is NP-Hard
• Relaxed problem can be solved using spectral methods
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Graph Representation1

For a graph G(V, E, W)
• Adjacency: W œ Rnún

• Degree: D œ Rnún

• Graph Laplacian: L œ Rnún
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1Pasadakis, Alappat, Schenk, and Wellein 2021.
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Partition Metric2

For subsets fi1,...,fik

• cut(fi, fī) =
q

iœfi,jœfī

wij

• vol(fi) =
q
iœfi

dii

Minimize normalized cut:

NCut(fi1, ..., fik) =
kÿ

i=1

cut(fii, fīi)
vol(fii) A bi-partitioned graph

2Pasadakis, Alappat, Schenk, and Wellein 2021.
Computational Science and Engineering 20th of December 2021 5/19



Outline

1. Graphs

2. Graclus Framework

3. Clustering Algorithms

4. Results

Computational Science and Engineering 20th of December 2021 6/19



Coarsening and Refinement3

Coarsening

• Visit each vertex and merge with neighbor
forming supernode

∆ Node degree and edge weights are
summed

• Obtain successively smaller graphs
{G, G+1, ..., Gm}

• Stop coarsening when |Vm| < c

Refining
• Finer graphs inherit coarser partitioning
• Refine partitioning using Weighted Kernel

K-Means algorithm

3Dhillon, Guan, and Kulis 2007.
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Weighted Kernel K-Means4

• K-means simple clustering algorithm.
Minimize sum of distances to centroids:

∆ only works on linearly separable
data

• Solution Project to higher dimension (KKM)
• Add weights to vertices to obtain Weighted

Kernel K-means (WKKM) objective:

•
qk

c=1
q

xiœfic
||xi ≠ µc||2

•
qk

c=1
q

xiœfic
||„(xi) ≠ µc||2

•
qk

c=1
q

xiœfic
wi||„(xi) ≠ µc||2

Node Weight Kernel
Degree of node ‡D≠1 + D≠1W D≠1

Table: Weights and Kernel for minimising
NCut

4Dhillon, Guan, and Kulis 2007.
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Direct Mutliway Spectral Clustering7

• Goal: Partition graph into k parts
• Compute k smallest eigenvectors of graph

Laplacian
∆ U œ Rnúk containing eigenvectors

• Use k-means algorithm to cluster
eigenvectors

Three Laplacians to study

• Normalized Laplacian: Lrw = I ≠ D≠1W

• —-Laplacian 5: L— = I ≠ D≠—W — œ [1, 2]
• p-Spectral 6

6Inoue, Li, and Kurata 2010.
6Pasadakis, Alappat, Schenk, and Wellein 2021.
7von Luxburg 2007.
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p-Spectral8

• Smallest eigenvector computation:

min
UœRnúk

T r(UT LU) subject to UT U = I

with T r(UT LU) =
kÿ

l

nÿ

ij

wij(ul
i ≠ ul

j)2

2||ul||22

Fiedler vector for p=2 (left) p = 1.1 (right)

Unconstrained p-norm optimization on Grassmann

minimize
UœGr(k,n)

=
kÿ

l

nÿ

ij

wij |ul
i ≠ ul

j |p

2||ul||pp
p œ [1.1, 2]

p-norm: ||u||p = p

ı̂ıÙ
nÿ

i=1

|ui|p

8Pasadakis, Alappat, Schenk, and Wellein 2021.
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Algorithm: Multilevel spectral clustering algorithm
Input: Adjacency matrix W œ Rnún, number k of clusters to construct

1) Coarsen graph to produce successively smaller adjacency matri-
ces {W, W1, ..., Wm}

• Merge vertices together, sum up node degree and edge weights
• Stop once |Vm| < 5k

2) Run base clustering
• Compute first k eigenvectors using (RW, Beta, p)-Laplacian
• Cluster eigenvectors using k-means algorithm

3) Refine partition to initial graph
• Finer graph inherits partitioning of lower level graph
• Use as initial guess for WKKM

Output: Clusters A1, ..., Ak

Computational Science and Engineering 20th of December 2021 12/19
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Metrics

Internal Metrics

• Normalized Cut (minimize):
kÿ

i=1

cut(Ci, C̄i)
vol(Ci)

External Metrics

• Accuracy (maximize)

Simulation Parameters

• Averaged over 10 runs
• Coarsen until |Vm| < 5k

• K-means algorithm run 30 times
• Best beta chosen from 11 values œ [1, 2]
• p-Spectral method uses normalized

eigenvectors as initial guess.
• Best p chosen from 8 values œ [1.1, 2]

Computational Science and Engineering 20th of December 2021 14/19



LFR Dataset
Stochastic block model with 10 clusters.

• Increasing noise

Coarse Level
Less than 50 vertices

Original Graph

Metric RW (%) Beta (%) p (%)
NCut -1.71 -1.45 -1.48
Acc +1.35 +1.33 +1.41

Runtime (s) 0.2 1.7 55.1

Table: Benchmark of LFR_40 dataset at
finest level (1000 vertices)

Computational Science and Engineering 20th of December 2021 15/19



Gauss Dataset
Dataset containing k clusters with 400 points each, sampled from Gaussian distribution.
k œ {32, 41, 50, 61}

• Increasing size

Coarse Level

Less than 5k vertices

Original Graph

Metric RW (%) Beta (%) p (%)
NCut 0.0 -0.79 +0.03
Acc +0.06 +1.62 -0.61

Runtime (s) 1.0 7.2 219.7

Table: Benchmark of largest Gauss
dataset at finest level (24400 vertices)

Computational Science and Engineering 20th of December 2021 16/19



Real-World Data

Coarse Level Original Graph

Metric RW (%) Beta (%) p (%)
NCut -3.58 -5.12 -4.66
Acc -2.94 -1.38 -1.02

Runtime (s) 0.2 1.0 46.4

Table: Benchmark of Fashion dataset at
finest level (10000 vertices)

Computational Science and Engineering 20th of December 2021 17/19



Future Work

• Rewrite Graclus code
• Improve refinement algorithm
• Study the combination of —-Laplacian and p-Spectral

Computational Science and Engineering 20th of December 2021 18/19



Thank you for your attention!
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LFR Original

Metric RW % Beta % p % p+beta %
NCut -1.71 -1.45 -1.48 -1.40
Acc +1.35 +1.33 +1.41 +1.34
NMI +1.40 +1.09 +1.21 +1.10

Table: Comparison of Fashion dataset at original graph
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Gauss Original

Metric RW (%) Beta (%) p (%)
NCut 0.0 -0.79 +0.03
Acc +0.06 +1.62 -0.61
NMI -0.02 +0.47 -0.18

Runtime (s) 1.0 7.2 219.7

Table: Comparison of Gauss_61_55_10NN dataset at original graph with 24400 vertices
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Real-World Ncut Coarse

Dataset RW % Beta % p % p+beta %
Fashion 5.68 6.11 6.12 6.22

k49 6.96 7.09 7.02 7.11
kmnist 7.64 7.89 7.91 7.91
mnist 3.29 3.52 3.65 3.79

Table: Percentage of improvement in NCut when compared to WKKM
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Real-World Metrics Original

Metric RW % Beta % p % p+beta %
NCut 3.58 5.12 4.66 4.01
Acc -2.94 -1.38 -1.02 -0.93
NMI -0.79 -0.04 +0.57 +0.08

Table: Comparison of Fashion dataset at original graph
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Random Walk Laplacian
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Di�usion Laplacian9

L = I ≠ D≠—W

with beta taking values between 1 and 2.

9Inoue, Li, and Kurata 2010.
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